This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285065 #22 Dec 01 2023 15:58:41 %S A285065 1,-3,-7,53,497,-147,-44055,-437339,971745,90858205,1254551513, %T A285065 -56188139,-361749699119,-7793811482035,-47717641321527, %U A285065 2053219888651909,77548473901557697,1171383881442334141,-8155337883596701767 %N A285065 Alternating row sums of Sheffer triangle S2[4,1] = A285061. %C A285065 See A285061 for details. This is a generalization of A000587. %F A285065 a(n) = Sum_{m=0..n} (-1)^m*A285061(n, m), n >= 0. %F A285065 E.g.f.: exp(x)*exp(1 - exp(4*x)). %F A285065 a(n) = e*Sum_{m>=0} ((-1)^m / m!)*(1 + 4*m)^n, n >= 0, (DobiĆski type formula). %F A285065 a(n) = Sum_{k=0..n} binomial(n, k) * 4^k * A000587(k), n >= 0. - _Vaclav Kotesovec_, Apr 23 2017 %F A285065 a(0) = 1; a(n) = a(n-1) - Sum_{k=1..n} binomial(n-1,k-1) * 4^k * a(n-k). - _Ilya Gutkovskiy_, Nov 30 2023 %t A285065 Table[Sum[Binomial[n, k]*BellB[k, -1]*4^k, {k, 0, n}], {n, 0, 20}] (* _Vaclav Kotesovec_, Apr 19 2017 *) %o A285065 (Python) %o A285065 from sympy import bell, binomial %o A285065 def a(n): return sum([binomial(n, k)*bell(k, -1)*4**k for k in range(n + 1)]) # _Indranil Ghosh_, May 06 2017 %Y A285065 Cf. A000587, A285061, A285064. %K A285065 sign,easy %O A285065 0,2 %A A285065 _Wolfdieter Lang_, Apr 13 2017