A285066 Triangle read by rows: T(n, m) = A285061(n, m)*m!, 0 <= m <= n.
1, 1, 4, 1, 24, 32, 1, 124, 480, 384, 1, 624, 5312, 10752, 6144, 1, 3124, 52800, 203520, 276480, 122880, 1, 15624, 500192, 3279360, 7956480, 8110080, 2949120, 1, 78124, 4626720, 48633984, 187729920, 329441280, 268369920, 82575360, 1, 390624, 42265472, 687762432, 3969552384, 10672865280, 14615838720, 9909043200, 2642411520, 1, 1953124, 383514240, 9448097280, 78486589440, 303521218560, 621544734720, 696605736960, 404288962560, 95126814720
Offset: 0
Examples
The triangle T(n, m) begins: n\m 0 1 2 3 4 5 6 7 0: 1 1: 1 4 2: 1 24 32 3: 1 124 480 384 4: 1 624 5312 10752 6144 5: 1 3124 52800 203520 276480 122880 6: 1 15624 500192 3279360 7956480 8110080 2949120 7: 1 78124 4626720 48633984 187729920 329441280 268369920 82575360 ... row 8: 1 390624 42265472 687762432 3969552384 10672865280 14615838720 9909043200 2642411520 row 9: 1 1953124 383514240 9448097280 78486589440 303521218560 621544734720 696605736960 404288962560 95126814720 ...
Links
- Wolfdieter Lang, On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli numbers, arXiv:1707.04451 [math.NT], 2017.
Crossrefs
Programs
-
Mathematica
T[n_, m_]:=Sum[Binomial[m, k]*(-1)^(k - m)*(1 + 4k)^n, {k, 0, n}]; Table[T[n, m], {n, 0, 10},{m, 0, n}] // Flatten (* Indranil Ghosh, May 02 2017 *)
-
Python
from sympy import binomial def T(n, m): return sum([binomial(m, k)*(-1)**(k - m)*(1 + 4*k)**n for k in range(n + 1)]) for n in range(21): print([T(n, m) for m in range(n + 1)]) # Indranil Ghosh, May 02 2017
Formula
T(n, m) = Sum_{k=0..n} binomial(m,k)*(-1)^(k-m)*(1+4*k)^n.
T(n, m) = Sum_{j=0..n} binomial(n-j,m-j)*A225118(n,n-j).
Recurrence: T(n, -1) = 0, T(0, 0) = 1, T(n, m) = 0 if n < m and T(n, m) =
4*m*T(n-1, m-1) + (1+4*m)*T(n-1, m) for n >= 1, m=0..n.
E.g.f. row polynomials R(n, x) = Sum_{m=0..n} T(n, m)*x^m: exp(z)/(1 - x*(exp(4*z) - 1)).
E.g.f. column m: exp(x)*(exp(4*x) - 1)^m, m >= 0.
O.g.f. column m: m!*(4*x)^m/Product_{j=0..m} (1 - (1 + 4*j)*x), m >= 0.
Comments