cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285069 Expansion of Product_{k>=1} (1 - x^(2*k-1))^(2*k-1).

This page as a plain text file.
%I A285069 #21 Nov 09 2017 10:54:14
%S A285069 1,-1,0,-3,3,-5,8,-10,22,-25,41,-57,88,-126,168,-261,351,-512,685,
%T A285069 -984,1357,-1865,2566,-3485,4838,-6459,8832,-11831,16056,-21404,28660,
%U A285069 -38259,50875,-67613,89161,-118184,155321,-204609,267708,-351125,458331,-597740
%N A285069 Expansion of Product_{k>=1} (1 - x^(2*k-1))^(2*k-1).
%H A285069 Seiichi Manyama, <a href="/A285069/b285069.txt">Table of n, a(n) for n = 0..10000</a>
%F A285069 a(n) = (-1)^n * A262736(n).
%F A285069 a(0) = 1, a(n) = -(1/n)*Sum_{k=1..n} A050999(k)*a(n-k) for n > 0.
%F A285069 a(n) ~ (-1)^n * exp(3^(4/3) * (Zeta(3))^(1/3) * n^(2/3) / 2^(5/3)) * Zeta(3)^(1/6) / (2^(3/4) * 3^(1/3) * sqrt(Pi) * n^(2/3)). - _Vaclav Kotesovec_, Nov 09 2017
%t A285069 CoefficientList[Series[Product[(1 - x^(2k-1))^(2k-1), {k, 50}], {x, 0, 50}], x] (* _Indranil Ghosh_, Apr 09 2017 *)
%o A285069 (PARI) N=66; x='x+O('x^N); Vec(exp(-sum(k=1, N, sumdiv(k, d, d^2*(d%2))*x^k/k))) \\ _Seiichi Manyama_, Oct 31 2017
%Y A285069 Cf. A050999, A262736, A262811.
%K A285069 sign
%O A285069 0,4
%A A285069 _Seiichi Manyama_, Apr 09 2017