This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285072 #27 Feb 16 2025 08:33:43 %S A285072 0,-1,0,-2,1,0,-3,4,-1,0,-4,10,-6,1,0,-5,20,-21,8,-1,0,-6,35,-56,36, %T A285072 -10,1,0,-7,56,-126,120,-55,12,-1,0,-8,84,-252,330,-220,78,-14,1,0,-9, %U A285072 120,-462,792,-715,364,-105,16,-1,0,-10,165,-792,1716,-2002,1365,-560,136,-18,1 %N A285072 Triangle read by rows: coefficients of the Laplacian polynomial of the n-path graph P_n. %C A285072 Version of A053122 with row-ending 0's and differing signs. %H A285072 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PathGraph.html">Path Graph</a> %H A285072 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LaplacianPolynomial.html">Laplacian Polynomial</a> %F A285072 T(n,k) = (-1)^(k+1)*binomial[n+k,2*k+1]; 0 <= n <= k - _Detlef Meya_, Oct 09 2023 %e A285072 Table starts: %e A285072 0 %e A285072 -1 0 %e A285072 -2 1 0 %e A285072 -3 4 -1 0 %e A285072 -4 10 -6 1 0 %e A285072 -5 20 -21 8 -1 0 %e A285072 -6 35 -56 36 -10 1 0 %e A285072 -7 56 -126 120 -55 12 -1 0 %e A285072 -8 84 -252 330 -220 78 -14 1 0 %e A285072 -9 120 -462 792 -715 364 -105 16 -1 0 %p A285072 S := proc(n, k) option remember; %p A285072 if n <= k then 0 elif k = 0 then (-1)^n*n %p A285072 else S(n-1, k-1) - S(n-2, k) - 2*S(n-1, k) fi end: %p A285072 T := (n, k) -> (-1)^(n+1)*S(n, k): %p A285072 seq(seq(T(n, k), k=0..n), n=0..10); # _Peter Luschny_, Apr 03 2020 %t A285072 CoefficientList[Table[CharacteristicPolynomial[KirchhoffMatrix[PathGraph[Range[n]]], x], {n, 10}], x] // Flatten %t A285072 CoefficientList[LinearRecurrence[{2 - x, -1}, {-x, (-2 + x) x}, 10], x] // Flatten %t A285072 CoefficientList[Table[(-1)^(n + 1) x^(1/2) ChebyshevU[2 n - 1, -Sqrt[x]/2], {n, 10}], x] // Flatten %t A285072 CoefficientList[Table[(2^-n ((2 - Sqrt[-4 + x] Sqrt[x] - x)^n - (2 + Sqrt[-4 + x] Sqrt[x] - x)^n))/Sqrt[(-4 + x)/x], {n, 10}] // Expand // FullSimplify, x] // Flatten %t A285072 T[n_,k_]:=(-1)^(k+1)*Binomial[n+k,2*k+1];Flatten[Table[T[n,k],{n,0,10},{k,0,n}]] (* _Detlef Meya_, Oct 09 2023 *) %o A285072 (Sage) # uses[riordan_square from A321620] %o A285072 # Returns the triangle as a matrix. %o A285072 riordan_square(-x/(1 - x)^2, 9) # _Peter Luschny_, Apr 03 2020 %Y A285072 Cf. A053122 (version lacking row-ending 0's and with differing signs). %Y A285072 Cf. A321620. %K A285072 sign,easy,tabl %O A285072 1,4 %A A285072 _Eric W. Weisstein_, Apr 09 2017