This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285102 #17 Apr 21 2021 12:08:35 %S A285102 2,6,210,72930,620310,278995269860970,12849025509071310, %T A285102 492608110538467706074890,1342951001046021018427857601026746070, %U A285102 37793589449865555275592120894959094883390892772270,728982633030274864467458719371654181886452163442582606072870,28339554655955912942523491885490197708224606885407444005070 %N A285102 a(n) = A007913(A285101(n)). %F A285102 a(0) = 2, for n > 0, a(n) = lcm(a(n-1),A242378(n,a(n-1))) / gcd(a(n-1),A242378(n,a(n-1))). %F A285102 a(n) = A007913(A285101(n)). %F A285102 Other identities. For all n >= 0: %F A285102 A001221(a(n)) = A001222(a(n)) = A285103(n). %F A285102 A048675(a(n)) = A068052(n). %o A285102 (PARI) %o A285102 A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; %o A285102 A242378(k,n) = { while(k>0,n = A003961(n); k = k-1); n; }; %o A285102 A285102(n) = { if(0==n,2,lcm(A285102(n-1),A242378(n,A285102(n-1)))/gcd(A285102(n-1),A242378(n,A285102(n-1)))); }; %o A285102 (Scheme) (definec (A285102 n) (if (zero? n) 2 (/ (lcm (A285102 (- n 1)) (A242378bi n (A285102 (- n 1)))) (gcd (A285102 (- n 1)) (A242378bi n (A285102 (- n 1))))))) %o A285102 (Python) # uses [A003961, A242378] %o A285102 from sympy import factorint, prime, primepi %o A285102 from sympy.ntheory.factor_ import core %o A285102 from operator import mul %o A285102 def a003961(n): %o A285102 f=factorint(n) %o A285102 return 1 if n==1 else reduce(mul, [prime(primepi(i) + 1)**f[i] for i in f]) %o A285102 def a242378(k, n): %o A285102 while k>0: %o A285102 n=a003961(n) %o A285102 k-=1 %o A285102 return n %o A285102 l=[2] %o A285102 for n in range(1, 12): %o A285102 x=l[n - 1] %o A285102 l.append(x*a242378(n, x)) %o A285102 print([core(j) for j in l]) # _Indranil Ghosh_, Jun 27 2017 %Y A285102 Cf. A003961, A007913, A048675, A068052, A242378, A285101, A285103. %K A285102 nonn %O A285102 0,1 %A A285102 _Antti Karttunen_, Apr 15 2017