This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285103 #32 May 18 2024 01:54:42 %S A285103 1,2,4,6,6,12,12,16,22,28,32,30,36,52,48,62,62,68,88,104,116,108,128, %T A285103 128,132,168,160,168,200,204,240,232,242,284,300,324,332,348,352,352, %U A285103 412,440,400,466,460,516,496,566,582,580,608,646,676,736,716,782,728,816,832,856,916,924,948,1034,1008,1044,1096,1154,1112,1212,1204,1188 %N A285103 Number of odd terms on row n of A053632: a(n) = A000120(A068052(n)). %H A285103 Alois P. Heinz, <a href="/A285103/b285103.txt">Table of n, a(n) for n = 0..5000</a> (first 257 terms from Antti Karttunen) %F A285103 a(n) = A000120(A068052(n)). %F A285103 a(n) = A001221(A285102(n)) = A001222(A285102(n)). %F A285103 A285104(n) = 2^n - a(n). %F A285103 A000124(n) = a(n) + A285105(n). %p A285103 b:= proc(n) option remember; `if`(n=0, 1, %p A285103 (t-> Bits[Xor](2^n*t, t))(b(n-1))) %p A285103 end: %p A285103 a:= n-> convert(Bits[Split](b(n)), `+`): %p A285103 seq(a(n), n=0..71); # _Alois P. Heinz_, Mar 07 2024 %t A285103 b[n_] := b[n] = If[n == 0, 1, With[{t = b[n-1]}, BitXor[2^n*t, t]]]; %t A285103 a[n_] := DigitCount[b[n], 2, 1]; %t A285103 Table[a[n], {n, 0, 100}] (* _Jean-François Alcover_, May 17 2024, after _Alois P. Heinz_ *) %o A285103 (Scheme) (define (A285103 n) (A000120 (A068052 n))) %o A285103 (Python) # uses [A000120] %o A285103 l=[1] %o A285103 for n in range(1, 101): %o A285103 x = l[n - 1] %o A285103 l.append(x^(2**n*x)) %o A285103 print([A000120(k) for k in l]) # _Indranil Ghosh_, Jun 28 2017 %Y A285103 Number of odd term on row n of A053632. %Y A285103 Cf. A000120, A000124, A001221, A001222, A068052, A285102, A285104, A285105. %K A285103 nonn %O A285103 0,2 %A A285103 _Antti Karttunen_, Apr 15 2017