This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285107 #8 Apr 12 2017 04:43:19 %S A285107 1,2,1,3,4,5,1,4,5,7,6,5,7,8,1,5,6,7,5,8,9,7,4,7,7,8,7,7,10,11,1,6,7, %T A285107 7,8,7,13,14,11,13,14,7,9,16,11,13,4,9,9,6,11,11,12,13,11,12,9,9,8,9, %U A285107 13,14,1,7,8,7,11,10,11,15,20,17,17,14,19,25,20,13,17,16,17,13,20,19,21,26,9,21,18,11,21,26,17,19,4,11,11,6,17,17,18,15,9 %N A285107 a(n) = A001222(A284577(n)). %H A285107 Antti Karttunen, <a href="/A285107/b285107.txt">Table of n, a(n) for n = 0..8192</a> %F A285107 a(n) = A001222(A284577(n)). %F A285107 a(n) = A285106(n) - A285108(n). %F A285107 Other identities. For all n >= 0: %F A285107 A007306(1+n) = a(n) + 2*A285108(n). %o A285107 (Scheme) %o A285107 (define (A285107 n) (A001222 (A284577 n))) %o A285107 ;; A more practical version, needing only an implementation of A003987bi (bitwise-xor, A003987) and memoization-macro definec: %o A285107 (define (bitwise_xor_of_exp_lists nums1 nums2) (let ((len1 (length nums1)) (len2 (length nums2))) (cond ((< len1 len2) (bitwise_xor_of_exp_lists nums2 nums1)) (else (map A003987bi nums1 (append nums2 (make-list (- len1 len2) 0))))))) %o A285107 (definec (A260443as_coeff_list n) (cond ((zero? n) (list)) ((= 1 n) (list 1)) ((even? n) (cons 0 (A260443as_coeff_list (/ n 2)))) (else (add_two_lists (A260443as_coeff_list (/ (- n 1) 2)) (A260443as_coeff_list (/ (+ n 1) 2)))))) %o A285107 (define (add_two_lists nums1 nums2) (let ((len1 (length nums1)) (len2 (length nums2))) (cond ((< len1 len2) (add_two_lists nums2 nums1)) (else (map + nums1 (append nums2 (make-list (- len1 len2) 0))))))) %Y A285107 Cf. A001222, A003987, A007306, A284577, A285106, A285108. %K A285107 nonn %O A285107 0,2 %A A285107 _Antti Karttunen_, Apr 11 2017