This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285110 #16 May 09 2021 09:51:31 %S A285110 0,2,2,1,2,2,1,1,2,2,1,1,1,2,1,1,2,2,2,1,1,2,1,1,1,2,1,1,1,2,1,1,2,2, %T A285110 2,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,2,1,1,2,1,1,1,2,1,1,1,2,1,1,2,2,2,1, %U A285110 1,2,1,1,1,2,1,1,1,2,1,1,1,2,2,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,2,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,2,1,1,2,1,1,1 %N A285110 a(n) = A001222(A285323(n)). %C A285110 The sequence is completely determined by the positions of two least significant 1-bits of n: After initial zero, if n is a power of two (only one 1-bit present) or if prime(1+A285099(n)) > prime(1+A007814(n))^2, a(n) = 2, otherwise a(n) = 1. %H A285110 Antti Karttunen, <a href="/A285110/b285110.txt">Table of n, a(n) for n = 0..8192</a> %F A285110 a(n) = A001222(A285323(n)). %o A285110 (Scheme) %o A285110 (define (A285110 n) (A001222 (A285323 n))) %o A285110 (define (A285110 n) (cond ((zero? n) n) ((or (= 1 (A000120 n)) (> (A000040 (+ 1 (A285099 n))) (A000290 (A000040 (+ 1 (A007814 n)))))) 2) (else 1))) %o A285110 (Python) %o A285110 from operator import mul %o A285110 from sympy import prime, primefactors %o A285110 from functools import reduce %o A285110 def a001222(n): return 0 if n<2 else a001222(n//min(primefactors(n))) + 1 %o A285110 def a019565(n): return reduce(mul, (prime(i+1) for i, v in enumerate(bin(n)[:1:-1]) if v == '1')) if n > 0 else 1 # This function from _Chai Wah Wu_ %o A285110 def a007947(n): return 1 if n<2 else reduce(mul, primefactors(n)) %o A285110 def a065642(n): %o A285110 if n==1: return 1 %o A285110 r=a007947(n) %o A285110 n += r %o A285110 while a007947(n)!=r: %o A285110 n+=r %o A285110 return n %o A285110 def a285323(n): return a065642(a065642(a019565(n)))//a019565(n) %o A285110 def a(n): return a001222(a285323(n)) %o A285110 print([a(n) for n in range(121)]) # _Indranil Ghosh_, Apr 20 2017 %Y A285110 Cf. A000040, A000290, A001222, A007814, A285099, A285323, A285324. %K A285110 nonn %O A285110 0,2 %A A285110 _Antti Karttunen_, Apr 19 2017