This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285112 #8 Apr 17 2017 09:02:31 %S A285112 1,2,3,4,5,9,6,8,7,25,14,27,10,12,13,16,11,49,39,125,22,28,42,81,15, %T A285112 20,19,18,21,169,26,32,17,121,79,343,65,117,205,625,35,44,43,56,69,84, %U A285112 133,243,23,45,33,40,31,361,30,24,34,63,277,2197,41,52,53,64,29,289,199,1331,130,6241,563,2401,106,325,193,351,335,1025,1030,3125,58 %N A285112 Permutation of natural numbers: a(0) = 1, a(1) = 2, a(2n) = A005117(1+a(n)), a(2n+1) = A065642(a(n)). %C A285112 Note the indexing: the domain starts from 0, while the range excludes zero. %C A285112 This sequence can be represented as a binary tree. Each left hand child is produced as A005117(1+n), and each right hand child as A065642(n), when the parent node contains n >= 2: %C A285112 1 %C A285112 | %C A285112 ...................2................... %C A285112 3 4 %C A285112 5......../ \........9 6......../ \........8 %C A285112 / \ / \ / \ / \ %C A285112 / \ / \ / \ / \ %C A285112 / \ / \ / \ / \ %C A285112 7 25 14 27 10 12 13 16 %C A285112 11 49 39 125 22 28 42 81 15 20 19 18 21 169 26 32 %C A285112 etc. %H A285112 Antti Karttunen, <a href="/A285112/b285112.txt">Table of n, a(n) for n = 0..116</a> %H A285112 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A285112 a(0) = 1, a(1) = 2, a(2n) = A005117(1+a(n)), a(2n+1) = A065642(a(n)). %o A285112 (Scheme, with memoization-macro definec) %o A285112 (definec (A285112 n) (cond ((<= n 1) (+ n 1)) ((even? n) (A005117 (+ 1 (A285112 (/ n 2))))) (else (A065642 (A285112 (/ (- n 1) 2)))))) %Y A285112 Inverse: A285111. %Y A285112 Cf. A005117, A065642. %Y A285112 Similar or related permutations: A243344, A243346, A252753, A277696, A284572. %Y A285112 Cf. also arrays A284457 & A284311. %K A285112 nonn,tabf %O A285112 0,2 %A A285112 _Antti Karttunen_, Apr 17 2017