This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285116 #15 Apr 17 2017 09:03:02 %S A285116 1,1,1,1,1,1,1,3,3,1,1,3,3,3,1,1,5,6,6,5,1,1,5,15,10,15,5,1,1,7,15,31, %T A285116 31,15,7,1,1,7,23,55,35,55,23,7,1,1,9,28,60,126,126,60,28,9,1,1,9,45, %U A285116 116,126,126,126,116,45,9,1,1,11,47,125,250,254,254,250,125,47,11,1,1,11,63,183,495,462,462,462,495,183,63,11,1 %N A285116 Triangle read by rows: T(0,n) = T(n,n) = 1; and for n > 0, 0 < k < n, T(n,k) = C(n-1,k-1) OR C(n-1,k), where C(n,k) is binomial coefficient (A007318) and OR is bitwise-OR (A003986). %H A285116 Antti Karttunen, <a href="/A285116/b285116.txt">Table of n, a(n) for n = 0..10439; the rows 0 - 143 of triangle</a> %H A285116 <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a> %F A285116 T(0,n) = T(n,n) = 1; and for n > 0, 0 < k < n, T(n,k) = C(n-1,k-1) OR C(n-1,k), where C(n,k) is binomial coefficient (A007318) and OR is bitwise-OR (A003986). %F A285116 T(n,k) = A285117(n,k) + A285118(n,k). %F A285116 C(n,k) = T(n,k) + A285118(n,k). [Where C(n,k) = A007318.] %e A285116 Rows 0 - 12 of the triangle: %e A285116 1, %e A285116 1, 1, %e A285116 1, 1, 1, %e A285116 1, 3, 3, 1, %e A285116 1, 3, 3, 3, 1, %e A285116 1, 5, 6, 6, 5, 1, %e A285116 1, 5, 15, 10, 15, 5, 1, %e A285116 1, 7, 15, 31, 31, 15, 7, 1, %e A285116 1, 7, 23, 55, 35, 55, 23, 7, 1, %e A285116 1, 9, 28, 60, 126, 126, 60, 28, 9, 1, %e A285116 1, 9, 45, 116, 126, 126, 126, 116, 45, 9, 1, %e A285116 1, 11, 47, 125, 250, 254, 254, 250, 125, 47, 11, 1, %e A285116 1, 11, 63, 183, 495, 462, 462, 462, 495, 183, 63, 11, 1 %t A285116 T[n_, k_]:= If[n==0 || n==k, 1, BitOr[Binomial[n - 1, k - 1], Binomial[n - 1, k]]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* _Indranil Ghosh_, Apr 16 2017 *) %o A285116 (Scheme) %o A285116 (define (A285116 n) (A285116tr (A003056 n) (A002262 n))) %o A285116 (define (A285116tr n k) (cond ((zero? k) 1) ((= k n) 1) (else (A003986tr (A007318tr (- n 1) (- k 1)) (A007318tr (- n 1) k))))) ;; Where A003986bi implements bitwise-OR (A003986) and A007318tr gives the binomial coefficients (A007318). %o A285116 (PARI) T(n, k) = if (n==0 || n==k, 1, bitor(binomial(n - 1, k - 1), binomial(n - 1, k))); %o A285116 for(n=0, 12, for(k=0, n, print1(T(n, k),", ");); print();) \\ _Indranil Ghosh_, Apr 16 2017 %Y A285116 Cf. A003986, A007318, A285117, A285118. %Y A285116 Cf. A285113 (row sums). %K A285116 nonn,tabl %O A285116 0,8 %A A285116 _Antti Karttunen_, Apr 16 2017