cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285122 Min(|d(k+1-i) - d(i)|, for i = 1..k), where d(1),..,d(k) are the divisors of n^2+1.

This page as a plain text file.
%I A285122 #8 Dec 12 2023 14:16:42
%S A285122 1,4,3,16,11,36,5,8,39,100,59,24,7,196,111,256,19,12,179,400,9,92,43,
%T A285122 576,311,676,63,152,419,36,11,16,99,76,611,1296,127,68,759,1600,29,
%U A285122 348,13,136,1011,44,31,456,1199,20,1299,536,271,2916,55,3136,15,668
%N A285122 Min(|d(k+1-i) - d(i)|, for i = 1..k), where d(1),..,d(k) are the divisors of n^2+1.
%H A285122 Clark Kimberling, <a href="/A285122/b285122.txt">Table of n, a(n) for n = 1..10000</a>
%F A285122 a(n)=A056737(A002522(n)).
%e A285122 5^2 + 1 = 26 has divisors 1,2,13,26, so that k=4 and d(k+1-i) - d(i) ranges through {-25,-11,11,25}, so that a(5) = 11.
%t A285122 f[n_] := f[n] = n^2+1; Table[Divisors[f[n]] - Reverse[Divisors[f[n]]], {n, 1, 10}]
%t A285122 Table[Min[Abs[Divisors[f[n]] - Reverse[Divisors[f[n]]]]], {n, 1, 100}]
%Y A285122 Cf. A002522, A002378, A056737.
%K A285122 nonn,easy
%O A285122 1,2
%A A285122 _Clark Kimberling_, Apr 11 2017