cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285187 a(n) = Sum(psi(k-1)*psi(n-k-1),k=0..n)+(1-(-1)^n)/2, where psi(k) = A000931(k+6).

Original entry on oeis.org

1, 3, 3, 7, 9, 15, 22, 33, 48, 71, 101, 147, 208, 297, 419, 591, 829, 1161, 1619, 2255, 3130, 4339, 6000, 8285, 11419, 15717, 21600, 29649, 40645, 55659, 76135, 104043, 142045, 193759, 264078, 359637, 489408, 665539, 904449, 1228343, 1667216, 2261593, 3066183
Offset: 0

Views

Author

N. J. A. Sloane, Apr 23 2017

Keywords

Crossrefs

Programs

  • Maple
    A000931 := proc(n) option remember; if n = 0 then 1 elif n <= 2 then 0 else procname(n-2)+procname(n-3); fi; end;
    psi:=n->A000931(n+6);
    f:=n->add(psi(k-1)*psi(n-k-1),k=0..n)+(1-(-1)^n)/2;
    [seq(f(n),n=0..40)];
  • Mathematica
    (* b is A000931 *)
    b[n_] := b[n] = Which[n == 0, 1, n <= 2, 0, True, b[n-2] + b[n-3]];
    psi[n_] := b[n+6];
    a[n_] := Sum[psi[k-1]*psi[n-k-1], {k, 0, n}] + (1-(-1)^n)/2;
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 19 2023, after Maple code *)

Formula

From Colin Barker, Apr 25 2017: (Start)
G.f.: (1 + 3*x - 4*x^3 - 3*x^4 + x^5 + 2*x^6 + x^7) / ((1 - x)*(1 + x)*(1 - x^2 - x^3)^2).
a(n) = 3*a(n-2) + 2*a(n-3) - 3*a(n-4) - 4*a(n-5) + 2*a(n-7) + a(n-8) for n>7. (End)