cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285212 Expansion of Product_{k>=0} (1-x^(3*k+2))^(3*k+2).

This page as a plain text file.
%I A285212 #20 Apr 25 2017 09:08:00
%S A285212 1,0,-2,0,1,-5,0,10,-8,-5,26,-11,-28,62,-4,-101,111,43,-260,182,228,
%T A285212 -583,202,715,-1155,25,1888,-2034,-851,4286,-3144,-3418,8895,-3888,
%U A285212 -9806,16848,-2479,-23812,29519,5626,-52156,46930,30033,-105320,66001,90431,-198736
%N A285212 Expansion of Product_{k>=0} (1-x^(3*k+2))^(3*k+2).
%H A285212 Seiichi Manyama, <a href="/A285212/b285212.txt">Table of n, a(n) for n = 0..10000</a>
%t A285212 nmax = 100; CoefficientList[Series[Product[(1-x^(3*k+2))^(3*k+2), {k,0,nmax}], {x,0,nmax}], x] (* _Vaclav Kotesovec_, Apr 15 2017 *)
%o A285212 (PARI) x='x+O('x^100); Vec(prod(k=0, 100, (1 - x^(3*k + 2))^(3*k + 2))) \\ _Indranil Ghosh_, Apr 15 2017
%Y A285212 Product_{k>=0} (1-x^(m*k+m-1))^(m*k+m-1): A285069 (m=2), this sequence (m=3), A285213 (m=4), A285214 (m=5).
%Y A285212 Cf. A262946.
%K A285212 sign
%O A285212 0,3
%A A285212 _Seiichi Manyama_, Apr 15 2017