cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285214 Expansion of Product_{k>=0} (1-x^(5*k+4))^(5*k+4).

This page as a plain text file.
%I A285214 #19 Apr 27 2017 10:10:50
%S A285214 1,0,0,0,-4,0,0,0,6,-9,0,0,-4,36,-14,0,1,-54,92,-19,0,36,-228,202,-24,
%T A285214 -9,272,-702,358,-29,-158,1168,-1696,598,2,-1027,3810,-3605,904,423,
%U A285214 -4600,10196,-6898,1240,2990,-15805,24104,-12242,822,14005,-46090,51376
%N A285214 Expansion of Product_{k>=0} (1-x^(5*k+4))^(5*k+4).
%H A285214 Seiichi Manyama, <a href="/A285214/b285214.txt">Table of n, a(n) for n = 0..10000</a>
%t A285214 nmax = 100; CoefficientList[Series[Product[(1-x^(5*k+4))^(5*k+4), {k,0,nmax}], {x,0,nmax}], x] (* _Vaclav Kotesovec_, Apr 15 2017 *)
%o A285214 (PARI) x='x+O('x^100); Vec(prod(k=0, 100, (1 - x^(5*k + 4))^(5*k + 4))) \\ _Indranil Ghosh_, Apr 15 2017
%Y A285214 Product_{k>=0} (1-x^(m*k+m-1))^(m*k+m-1): A285069 (m=2), A285212 (m=3), A285213 (m=4), this sequence (m=5).
%Y A285214 Cf. A285132.
%K A285214 sign
%O A285214 0,5
%A A285214 _Seiichi Manyama_, Apr 15 2017