cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285241 Expansion of Product_{k>=1} 1/(1 - k*x^k)^(k^2).

Original entry on oeis.org

1, 1, 9, 36, 140, 481, 1774, 5925, 20076, 64980, 208486, 652058, 2017023, 6117878, 18347256, 54222195, 158463794, 457570786, 1307951914, 3700153918, 10371860026, 28810051738, 79359812567, 216834266612, 587961817595, 1582612248239, 4230325722508
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 15 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1-k*x^k)^(k^2), {k,1,nmax}], {x,0,nmax}], x]

Formula

a(n) ~ c * n^8 * 3^(n/3), where
if mod(n,3) = 0 then c = 3435237242728465092737309192093188152686332293\
03276380306112638865540880372901642880694943679256417087889777743957063\
209444405157397505005623042846150296486667845382334521513094023.8560142\
40331306860864399770618296475558098172993864629247911801570500913143642\
65158886200452165335605783203726486071335...
if mod(n,3) = 1 then c = 3435237242728465092737309192093188152686332293\
03276380306112638865540880372901642880694943679256417087889777743957063\
209444405157397505005623042846150296486667845382334521513094023.8560112\
77299895134841028015999951571187798033179513268954711586617617334007687\
07198348808962592621276659532114355538024...
if mod(n,3) = 2 then c = 3435237242728465092737309192093188152686332293\
03276380306112638865540880372901642880694943679256417087889777743957063\
209444405157397505005623042846150296486667845382334521513094023.8560117\
00278534968233203470801053870003971422069097966617636511346003845666735\
79293861331368526745743422198017148868212...
In closed form, a(n) ~ -(27*Product_{k>=4}((1 - k / 3^(k/3))^(-k^2)) / (13 + 128*3^(1/3) - 95*3^(2/3)) + 243*Product_{k>=4}((1 + (-1)^(1 + 2*k/3) * k / 3^(k/3))^(-k^2)) / ((-1)^(2*n/3) * ((3 + 2*(-3)^(1/3))^4 * (-3 + (-3)^(2/3)))) + (-1)^(1 - 4*n/3) * Product_{k>=4}((1 + (-1)^(1 + 4*k/3) * k / 3^(k/3))^(-k^2)) / ((1 + (-1/3)^(1/3)) * (1 - 2*(-1/3)^(2/3))^4)) / 793618560 * n^8 * 3^(n/3).