A285273 Number of integers, x, with n+1 digits, that have the property that there exists an integer k, with x <= k < 2*x, such that k/x = 1 + (x-10^n)/(10^n-1), i.e., the same digits appear in the denominator and in the recurring decimal.
2, 4, 4, 8, 8, 32, 8, 32, 8, 32, 8, 128, 16, 32, 64, 128, 8, 256, 4, 256, 128, 128, 4, 1024, 64, 128, 32, 512, 64, 8192, 16, 4096, 64, 128, 256, 2048, 16, 16, 64, 4096, 32, 16384, 32, 2048, 512, 128, 8, 8192, 32, 2048, 256, 1024, 32, 4096, 512, 8192, 64, 512, 8
Offset: 1
Examples
The number 154 has the property that there exists an integer, 238, for which 238/154 = 1 + 54/99 = 1.545454545... There are 4 three-digit values that give rise to a 2-digit recurring decimal: 100/100.0 = 1.0000000000000000 208/144.0 = 1.4444444444444444... 238/154.0 = 1.5454545454545454... 394/198.0 = 1.9898989898989898... thus a(2) = 4. For n=3, a(3) = 8: 10000/10000.0 = 1.0000000000000000 14938/12222.0 = 1.2222222222222222... 16198/12727.0 = 1.2727272727272727... 22348/14949.0 = 1.4949494949494949... 22648/15049.0 = 1.5049504950495049... 29830/17271.0 = 1.7271727172717271... 31600/17776.0 = 1.7776777677767776... 39994/19998.0 = 1.9998999899989998...
Programs
-
Mathematica
a[n_] := Length@ List@ ToRules@ Reduce[k/x == 1 + (x-10^n)/(10^n-1) && 10^n <= x < 10^(n+1) && x <= k < 2 x, {k, x}, Integers]; Array[a, 20] (* for n<60, Giovanni Resta, Jun 30 2017 *)
-
Python
from math import sqrt def is_square(n): root = int(sqrt(n)) return root*root == n def find_sols(length): count = 0 k=10**length for n in range(k,4*k-2): discr= (2*k-1)*(2*k-1) - 4*(k*(k-1)-(k-1)*n) if is_square(discr): count+=1 b=(-(2*k-1)+sqrt(discr))/2 print(n, k+b, n/(k+b)) return count for i in range(8): print(find_sols(i))
Extensions
Definition corrected and a(11)-a(59) from Giovanni Resta, Jun 30 2017
Comments