This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285282 #19 May 17 2017 05:36:15 %S A285282 1,2,3,5,7,8,18,57,239 %N A285282 Numbers n such that n^2 + 1 is 13-smooth. %C A285282 Equivalently: Numbers n such that all prime factors of n^2 + 1 are <= 13. %C A285282 Since an odd prime factor of n^2 + 1 must be of the form 4m + 1, n^2 + 1 must be of the form 2*5^a*13^b. %C A285282 This sequence is complete by a theorem of Størmer. %C A285282 The largest instance 239^2 + 1 = 2*13^4 also gives the only nontrivial solution for x^2 + 1 = 2y^4 (Ljunggren). %D A285282 W. Ljunggren, Zur Theorie der Gleichung x^2 + 1 = 2y^4, Avh. Norsk Vid. Akad. Oslo. 1(5) (1942), 1--27. %H A285282 A. Schinzel, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa13/aa13113.pdf">On two theorems of Gelfond and some of their applications</a>, Acta Arithmetica 13 (1967-1968), 177--236. %H A285282 Ray Steiner, <a href="https://doi.org/10.1016/S0022-314X(05)80029-0">Simplifying the Solution of Ljunggren's Equation X^2 + 1 = 2Y^4</a>, J. Number Theory 37 (1991), 123--132, more accesible proof of Ljunggren's result. %H A285282 Carl Størmer, <a href="http://www.archive.org/stream/skrifterudgivnea1897chri#page/n79/mode/2up">Quelques théorèmes sur l'équation de Pell x^2 - Dy^2 = +-1 et leurs applications</a> (in French), Skrifter Videnskabs-selskabet (Christiania), Mat.-Naturv. Kl. I Nr. 2 (1897), 48 pp. %e A285282 For n = 8, a(8)^2 + 1 = 57^2 + 1 = 3250 = 2*5^3*13. %t A285282 Select[Range[1000], FactorInteger[#^2 + 1][[-1, 1]] <= 13&] (* _Jean-François Alcover_, May 17 2017 *) %o A285282 (PARI) for(n=1, 9e6, if(vecmax(factor(n^2+1)[, 1])<=13, print1(n", "))) %o A285282 (Python) %o A285282 from sympy import primefactors %o A285282 def ok(n): return max(primefactors(n**2 + 1))<=13 # _Indranil Ghosh_, Apr 16 2017 %Y A285282 Cf. A014442, A252493 (n(n+1) instead of n^2 + 1). %K A285282 nonn,fini,full %O A285282 1,2 %A A285282 _Tomohiro Yamada_, Apr 16 2017