cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285288 Expansion of Product_{k>=0} (1 + x^(4*k+1))^(4*k+1).

This page as a plain text file.
%I A285288 #14 Apr 16 2017 10:27:29
%S A285288 1,1,0,0,0,5,5,0,0,9,19,10,0,13,58,55,10,17,118,191,95,26,223,512,400,
%T A285288 116,362,1175,1329,564,609,2368,3593,2218,1246,4402,8600,7118,3433,
%U A285288 7792,18503,19778,10702,13924,37009,49017,32097,27141,69629,111251,88972
%N A285288 Expansion of Product_{k>=0} (1 + x^(4*k+1))^(4*k+1).
%H A285288 Seiichi Manyama, <a href="/A285288/b285288.txt">Table of n, a(n) for n = 0..10000</a>
%F A285288 a(n) = (-1)^n * A285070(n).
%F A285288 a(n) ~ exp(3^(4/3) * Zeta(3)^(1/3) * n^(2/3) / 4) * Zeta(3)^(1/6) / (2^(23/24) * 3^(1/3) * sqrt(Pi) * n^(2/3)). - _Vaclav Kotesovec_, Apr 16 2017
%t A285288 nmax = 50; CoefficientList[Series[Product[(1 + x^(4*k-3))^(4*k-3), {k,1,nmax}], {x,0,nmax}], x] (* _Vaclav Kotesovec_, Apr 16 2017 *)
%Y A285288 Product_{k>=0} (1 + x^(m*k+1))^(m*k+1): A262736 (m=2), A262949 (m=3), this sequence (m=4).
%Y A285288 Cf. A285070, A285287.
%K A285288 nonn
%O A285288 0,6
%A A285288 _Seiichi Manyama_, Apr 16 2017