cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285289 Expansion of Product_{k>=1} ((1 + x^k) / (1 + x^(2*k)))^k.

This page as a plain text file.
%I A285289 #9 Apr 16 2017 06:14:17
%S A285289 1,1,1,4,5,10,16,26,44,68,110,167,265,399,609,919,1371,2040,3005,4420,
%T A285289 6436,9364,13501,19433,27806,39639,56265,79572,112126,157390,220283,
%U A285289 307163,427145,592029,818359,1127878,1550483,2125656,2907013,3965853,5397497
%N A285289 Expansion of Product_{k>=1} ((1 + x^k) / (1 + x^(2*k)))^k.
%H A285289 Vaclav Kotesovec, <a href="/A285289/b285289.txt">Table of n, a(n) for n = 0..1000</a>
%F A285289 a(n) ~ exp(3^(5/3) * Zeta(3)^(1/3) * n^(2/3) / 4) * Zeta(3)^(1/6) / (2 * 3^(1/6) * sqrt(Pi) * n^(2/3)).
%t A285289 nmax = 50; CoefficientList[Series[Product[((1+x^k)/(1+x^(2*k)))^k, {k, 1, nmax}], {x, 0, nmax}], x]
%Y A285289 Cf. A263345, A285290, A285291.
%K A285289 nonn
%O A285289 0,4
%A A285289 _Vaclav Kotesovec_, Apr 16 2017