cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285290 Expansion of Product_{k>=1} ((1 + x^k) / (1 + x^(4*k)))^k.

This page as a plain text file.
%I A285290 #8 Apr 16 2017 06:15:13
%S A285290 1,1,2,5,7,15,26,44,74,125,205,331,534,844,1332,2077,3215,4934,7533,
%T A285290 11410,17191,25751,38346,56833,83814,123025,179776,261639,379186,
%U A285290 547476,787516,1128775,1612395,2295701,3258177,4610130,6503873,9149365,12835612,17959085
%N A285290 Expansion of Product_{k>=1} ((1 + x^k) / (1 + x^(4*k)))^k.
%H A285290 Vaclav Kotesovec, <a href="/A285290/b285290.txt">Table of n, a(n) for n = 0..1000</a>
%F A285290 a(n) ~ exp(2^(-8/3) * 3^(5/3) * (5*Zeta(3))^(1/3) * n^(2/3)) * (5*Zeta(3))^(1/6) / (2^(4/3) * 3^(1/6) * sqrt(Pi) * n^(2/3)).
%t A285290 nmax = 50; CoefficientList[Series[Product[((1+x^k)/(1+x^(4*k)))^k, {k, 1, nmax}], {x, 0, nmax}], x]
%Y A285290 Cf. A285289, A263345, A285291.
%K A285290 nonn
%O A285290 0,3
%A A285290 _Vaclav Kotesovec_, Apr 16 2017