This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285293 #12 Apr 16 2017 07:51:13 %S A285293 1,1,2,5,8,11,23,39,58,102,160,250,392,614,929,1426,2155,3221,4816, %T A285293 7124,10516,15389,22448,32549,47027,67586,96779,138052,196078,277606, %U A285293 391570,550516,771442,1077818,1501214,2084899,2887759,3988792,5495381,7552127,10353345 %N A285293 Expansion of Product_{k>=1} (1 + x^k)^k / (1 + x^(5*k))^(5*k). %C A285293 In general, if m > 1 and g.f. = Product_{k>=1} (1 + x^k)^k / (1 + x^(m*k))^(m*k), then a(n, m) ~ exp(2^(-4/3) * 3^(4/3) * (1-1/m)^(1/3) * Zeta(3)^(1/3) * n^(2/3)) * 2^(m/12 - 3/4) * (1-1/m)^(1/6) * Zeta(3)^(1/6) / (3^(1/3) * sqrt(Pi) * n^(2/3)). %H A285293 Seiichi Manyama, <a href="/A285293/b285293.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from Vaclav Kotesovec) %F A285293 a(n) ~ exp(2^(-2/3) * 3^(4/3) * 5^(-1/3) * Zeta(3)^(1/3) * n^(2/3)) * Zeta(3)^(1/6) / (3^(1/3) * 5^(1/6) * sqrt(Pi) * n^(2/3)). %t A285293 nmax = 50; CoefficientList[Series[Product[(1+x^k)^k/(1+x^(5*k))^(5*k), {k, 1, nmax}], {x, 0, nmax}], x] %Y A285293 Cf. A262736 (m=2), A262924 (m=3), A285292 (m=4). %K A285293 nonn %O A285293 0,3 %A A285293 _Vaclav Kotesovec_, Apr 16 2017