cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285294 Expansion of Product_{k>=1} (1 + x^(3*k))^(3*k) / (1 + x^k)^k.

This page as a plain text file.
%I A285294 #12 Apr 24 2017 08:32:00
%S A285294 1,-1,-1,1,-2,-3,7,-4,-1,20,-9,-15,45,-39,-38,95,-81,-99,244,-196,
%T A285294 -188,538,-371,-421,1256,-823,-820,2575,-1672,-1904,5367,-3714,-3861,
%U A285294 10555,-7362,-8159,21391,-14975,-15592,41654,-28293,-30748,82026,-54899,-57331,155933
%N A285294 Expansion of Product_{k>=1} (1 + x^(3*k))^(3*k) / (1 + x^k)^k.
%H A285294 Seiichi Manyama, <a href="/A285294/b285294.txt">Table of n, a(n) for n = 0..10000</a>
%t A285294 nmax = 50; CoefficientList[Series[Product[(1 + x^(3*k))^(3*k) / (1 + x^k)^k, {k,1,nmax}], {x,0,nmax}], x] (* _Vaclav Kotesovec_, Apr 16 2017 *)
%Y A285294 Product_{k>=1} (1 + x^(m*k))^(m*k) / (1 + x^k)^k: A284628 (m=2), this sequence (m=3), A285295 (m=4).
%Y A285294 Cf. A262924.
%K A285294 sign
%O A285294 0,5
%A A285294 _Seiichi Manyama_, Apr 16 2017