cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285299 Lexicographically earliest sequence of distinct positive terms such that the product of two consecutive terms is divisible by p^3 for some prime p.

This page as a plain text file.
%I A285299 #12 Apr 20 2017 12:33:37
%S A285299 1,8,2,4,6,9,3,16,5,24,7,27,10,12,14,20,18,15,25,30,28,22,32,11,40,13,
%T A285299 48,17,54,19,56,21,36,26,44,34,52,38,60,42,45,33,63,39,64,23,72,29,80,
%U A285299 31,81,35,49,70,50,55,75,65,88,37,96,41,104,43,108,46,68
%N A285299 Lexicographically earliest sequence of distinct positive terms such that the product of two consecutive terms is divisible by p^3 for some prime p.
%C A285299 This sequence is a permutation of the natural numbers.
%H A285299 Rémy Sigrist, <a href="/A285299/b285299.txt">Table of n, a(n) for n = 1..10000</a>
%H A285299 Rémy Sigrist, <a href="/A285299/a285299.txt">C++ program for A285299</a>
%H A285299 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%e A285299 The first terms, alongside the primes p such that p^3 divides a(n)*a(n+1), are:
%e A285299 n       a(n)    p
%e A285299 --      ----    -
%e A285299 1       1       2
%e A285299 2       8       2
%e A285299 3       2       2
%e A285299 4       4       2
%e A285299 5       6       3
%e A285299 6       9       3
%e A285299 7       3       2
%e A285299 8       16      2
%e A285299 9       5       2
%e A285299 10      24      2
%e A285299 11      7       3
%e A285299 12      27      3
%e A285299 13      10      2
%e A285299 14      12      2
%e A285299 15      14      2
%e A285299 16      20      2
%e A285299 17      18      3
%e A285299 18      15      5
%e A285299 19      25      5
%e A285299 20      30      2
%e A285299 ...
%e A285299 64      43      3
%e A285299 65      108     2, 3
%e A285299 66      46      2
%e A285299 ...
%Y A285299 Cf. A285296.
%K A285299 nonn
%O A285299 1,2
%A A285299 _Rémy Sigrist_, Apr 16 2017