cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285320 If n == 0 or A008683(n) == 0, then a(n) = 0, otherwise a(n) = 1+a(A048675(n)); number of iterations of A048675 needed before the result is either zero or nonsquarefree number (A013929).

This page as a plain text file.
%I A285320 #16 Apr 18 2017 15:43:27
%S A285320 0,1,2,3,0,1,4,1,0,0,2,1,0,1,1,5,0,1,0,1,0,3,2,1,0,0,2,0,0,1,2,1,0,1,
%T A285320 2,1,0,1,3,3,0,1,2,1,0,0,2,1,0,0,0,3,0,1,0,1,0,3,1,1,0,1,1,0,0,1,2,1,
%U A285320 0,3,2,1,0,1
%N A285320 If n == 0 or A008683(n) == 0, then a(n) = 0, otherwise a(n) = 1+a(A048675(n)); number of iterations of A048675 needed before the result is either zero or nonsquarefree number (A013929).
%C A285320 Conjecture: all terms are well-defined (finite). This implies also the conjecture I have made in A019565.
%F A285320 If n == 0 or A008683(n) == 0, then a(n) = 0, otherwise a(n) = 1+a(A048675(n)).
%F A285320 a(A109162(n)) = n.
%e A285320 a(38) = 3 because 38 = 2*19 (thus squarefree), A048675(38) = 129 (= 3*43), A048675(129) = 8194 (= 2*17*241) and A048675(8194) = 4503599627370561 (= 3^2 * 37 * 71 * 190483425427), so three steps were needed before nonsquarefree number was reached.
%e A285320 a(74) >= 3 as A048675(74) = 2049 (squarefree), A048675(2049) =  10633823966279326983230456482242756610 (squarefree), A048675(10633823966279326983230456482242756610) = ???
%o A285320 (PARI)
%o A285320 A048675(n) = my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; \\ _Michel Marcus_, Oct 10 2016
%o A285320 A285320(n) = if(!n || !moebius(n),0,1+A285320(A048675(n)));
%o A285320 (Scheme) (define (A285320 n) (if (or (zero? n) (zero? (A008683 n))) 0 (+ 1 (A285320 (A048675 n)))))
%Y A285320 A left inverse of A109162.
%Y A285320 Cf. A008683, A005117, A013929, A048675.
%Y A285320 Cf. also A285319, A285331, A285332.
%K A285320 nonn,hard
%O A285320 0,3
%A A285320 _Antti Karttunen_, Apr 18 2017