This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285322 #14 Nov 09 2024 23:45:04 %S A285322 2,4,3,8,9,6,16,27,12,5,32,81,18,25,10,64,243,24,125,20,15,128,729,36, %T A285322 625,40,45,30,256,2187,48,3125,50,75,60,7,512,6561,54,15625,80,135,90, %U A285322 49,14,1024,19683,72,78125,100,225,120,343,28,21 %N A285322 Transpose of square array A285321. %C A285322 See A285321. %o A285322 (Scheme) (define (A285322 n) (A285321bi (A004736 n) (A002260 n))) ;; For A285321bi, see A285321. %o A285322 (Python) %o A285322 from functools import reduce %o A285322 from operator import mul %o A285322 from sympy import prime, primefactors %o A285322 def a019565(n): return reduce(mul, (prime(i+1) for i, v in enumerate(bin(n)[:1:-1]) if v == '1')) if n > 0 else 1 # This function from Chai Wah Wu %o A285322 def a007947(n): return 1 if n<2 else reduce(mul, primefactors(n)) %o A285322 def a065642(n): %o A285322 if n==1: return 1 %o A285322 r=a007947(n) %o A285322 n = n + r %o A285322 while a007947(n)!=r: %o A285322 n+=r %o A285322 return n %o A285322 def A(n, k): return a019565(k) if n==1 else a065642(A(n - 1, k)) %o A285322 for n in range(1, 11): print([A(n - k + 1, k) for k in range(1, n + 1)]) # _Indranil Ghosh_, Apr 19 2017 %Y A285322 Transpose: A285321. %K A285322 nonn,tabl %O A285322 1,1 %A A285322 _Antti Karttunen_, Apr 17 2017