This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285333 #11 Apr 20 2017 09:21:20 %S A285333 0,1,2,2,3,4,4,3,6,4,9,6,5,8,8,4,15,8,12,5,14,10,27,8,10,6,25,12,7,16, %T A285333 16,5,210,16,45,10,35,16,18,5,105,16,28,11,462,28,81,10,21,12,20,7, %U A285333 154,26,125,16,30,8,49,24,11,32,32,6,10659,212,420,17,910,46,75,10,78,36,175,20,33,20,24,6,3094,106,315,18,385,32,56,17,780045 %N A285333 a(n) = A048675(A285332(n)). %C A285333 Following A285332, also this sequence can be represented in a form of a binary tree: %C A285333 0 %C A285333 | %C A285333 ...................1................... %C A285333 2 2 %C A285333 3......../ \........4 4......../ \........3 %C A285333 / \ / \ / \ / \ %C A285333 / \ / \ / \ / \ %C A285333 / \ / \ / \ / \ %C A285333 6 4 9 6 5 8 8 4 %C A285333 15 8 12 5 14 10 27 8 10 6 25 12 7 16 16 5 %C A285333 etc. %H A285333 Antti Karttunen, <a href="/A285333/b285333.txt">Table of n, a(n) for n = 0..1023</a> %F A285333 a(n) = A048675(A285332(n)). %F A285333 For all n >= 1, a(2n) = A285332(n). %F A285333 a(2^n) = A109162(1+n). [The left edge of the tree.] %F A285333 a(A000225(n)) = n. [The right edge of tree.] %o A285333 (PARI) %o A285333 A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from _M. F. Hasler_ %o A285333 A048675(n) = my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; \\ _Michel Marcus_, Oct 10 2016 %o A285333 A007947(n) = factorback(factorint(n)[, 1]); \\ From _Andrew Lelechenko_, May 09 2014 %o A285333 A065642(n) = { my(r=A007947(n)); if(1==n,n,n = n+r; while(A007947(n) <> r, n = n+r); n); }; %o A285333 A285332(n) = { if(n<=1,n+1,if(!(n%2),A019565(A285332(n/2)),A065642(A285332((n-1)/2)))); }; %o A285333 A285333(n) = if(!n,n,if(!(n%2),A285332(n/2),A048675(A285332(n)))); %o A285333 (Scheme) (define (A285333 n) (A048675 (A285332 n))) %Y A285333 Cf. A001477, A048675, A109162, A285325, A285330, A285332 (even bisection). %K A285333 nonn,tabf %O A285333 0,3 %A A285333 _Antti Karttunen_, Apr 19 2017