This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285338 #22 Apr 17 2017 10:24:28 %S A285338 1,1,0,0,0,0,6,6,0,0,0,11,26,15,0,0,16,82,86,20,0,21,172,316,180,15, %T A285338 26,328,872,790,226,37,538,2043,2681,1310,202,845,4184,7426,5390,1447, %U A285338 1290,7855,18067,17705,7277,2662,13723,39468,50030,28707,8742,22979,79760 %N A285338 Expansion of Product_{k>=1} (1 + x^(5*k-4))^(5*k-4). %C A285338 For all n<=30 a(n) = abs(A285071(n)), but a(31) <> abs(A285071(31)). %C A285338 In general, if m >= 1 and g.f. = Product_{k>=1} (1 + x^(m*k-m+1))^(m*k-m+1), then a(n, m) ~ exp(2^(-4/3) * 3^(4/3) * m^(-1/3) * Zeta(3)^(1/3) * n^(2/3)) * Zeta(3)^(1/6) / (2^(1/6 + 1/(2*m) + m/12) * 3^(1/3) * m^(1/6) * sqrt(Pi) * n^(2/3)). %H A285338 Seiichi Manyama, <a href="/A285338/b285338.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from Vaclav Kotesovec) %F A285338 a(n) ~ exp(2^(-4/3) * 3^(4/3) * 5^(-1/3) * Zeta(3)^(1/3) * n^(2/3)) * Zeta(3)^(1/6) / (2^(41/60) * 3^(1/3) * 5^(1/6) * sqrt(Pi) * n^(2/3)). %t A285338 nmax = 50; CoefficientList[Series[Product[(1+x^(5*k-4))^(5*k-4), {k, 1, nmax}], {x, 0, nmax}], x] %Y A285338 Product_{k>=0} (1 + x^(m*k+1))^(m*k+1): A026007 (m=1), A262736 (m=2), A262949 (m=3), A285288 (m=4), this sequence (m=5). %Y A285338 Cf. A285071, A285340. %K A285338 nonn %O A285338 0,7 %A A285338 _Vaclav Kotesovec_, Apr 17 2017