cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285348 Expansion of r(q^2) / r(q)^2 in powers of q where r() is the Rogers-Ramanujan continued fraction.

This page as a plain text file.
%I A285348 #23 May 17 2018 05:33:54
%S A285348 1,2,0,-4,-2,6,8,-4,-16,-6,20,24,-12,-44,-16,52,62,-28,-108,-40,122,
%T A285348 144,-64,-244,-88,266,308,-136,-508,-180,544,624,-272,-1008,-356,1060,
%U A285348 1206,-524,-1920,-672,1988,2244,-968,-3524,-1224,3606,4048,-1732,-6284
%N A285348 Expansion of r(q^2) / r(q)^2 in powers of q where r() is the Rogers-Ramanujan continued fraction.
%C A285348 Let k(q) = r(q) * r(q^2)^2.
%C A285348 G.f. satisfies: A(q) = (1 + k(q))/(1 - k(q)).
%C A285348 And r(q^2)^5 = k(q)^2 * A(q).
%H A285348 Seiichi Manyama, <a href="/A285348/b285348.txt">Table of n, a(n) for n = 0..10000</a>
%H A285348 Wikipedia, <a href="https://en.wikipedia.org/wiki/Rogers%E2%80%93Ramanujan_continued_fraction">Rogers-Ramanujan continued fraction</a>
%F A285348 a(n) = A285349(n) - A138518(n) for n>0 (conjectured). - _Thomas Baruchel_, May 14 2018
%Y A285348 r(q^k) / r(q)^k: this sequence (k=2), A285583 (k=3), A285584 (k=4), A285585 (k=5).
%Y A285348 Cf. A007325, A078905 (r(q)^5), A112274 (k(q)), A112803 (1 + k(q)), A285349, A285355 (k(q)^2).
%K A285348 sign
%O A285348 0,2
%A A285348 _Seiichi Manyama_, Apr 17 2017