This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285349 #18 May 17 2018 05:34:51 %S A285349 1,-2,4,-4,2,2,-8,12,-12,6,8,-24,36,-36,16,20,-62,92,-88,40,46,-144, %T A285349 208,-196,88,102,-308,440,-412,180,208,-624,884,-816,356,404,-1206, %U A285349 1692,-1552,672,760,-2244,3128,-2852,1224,1378,-4048,5612,-5084,2174,2428,-7104,9796,-8836,3760 %N A285349 Expansion of r(q)^2 / r(q^2) in powers of q where r() is the Rogers-Ramanujan continued fraction. %C A285349 Let k(q) = r(q) * r(q^2)^2. %C A285349 G.f. satisfies: A(q) = (1 - k(q))/(1 + k(q)). %C A285349 And r(q)^5 = k(q) * A(q)^2. %H A285349 Seiichi Manyama, <a href="/A285349/b285349.txt">Table of n, a(n) for n = 0..10000</a> %H A285349 Wikipedia, <a href="https://en.wikipedia.org/wiki/Rogers%E2%80%93Ramanujan_continued_fraction">Rogers-Ramanujan continued fraction</a> %F A285349 a(n) = A138518(n) + A285348(n) for n>0 (conjectured). - _Thomas Baruchel_, May 14 2018 %Y A285349 r(q)^k / r(q^k): this sequence (k=2), A285628 (k=3), A285629 (k=4), A285630 (k=5). %Y A285349 Cf. A007325, A078905 (r(q)^5), A112274 (k(q)), A285348. %K A285349 sign %O A285349 0,2 %A A285349 _Seiichi Manyama_, Apr 17 2017