This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285362 #25 Aug 21 2021 06:36:41 %S A285362 1,4,2,15,12,3,60,58,28,4,262,273,185,55,5,1243,1329,1094,495,96,6, %T A285362 6358,6839,6293,3757,1148,154,7,34835,37423,36619,26421,11122,2380, %U A285362 232,8,203307,217606,219931,180482,96454,28975,4518,333,9,1257913,1340597,1376929,1230737,787959,308127,67898,7995,460,10 %N A285362 Sum T(n,k) of the entries in the k-th blocks of all set partitions of [n]; triangle T(n,k), n>=1, 1<=k<=n, read by rows. %H A285362 Alois P. Heinz, <a href="/A285362/b285362.txt">Rows n = 1..141, flattened</a> %H A285362 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %e A285362 T(3,2) = 12 because the sum of the entries in the second blocks of all set partitions of [3] (123, 12|3, 13|2, 1|23, 1|2|3) is 0+3+2+5+2 = 12. %e A285362 Triangle T(n,k) begins: %e A285362 1; %e A285362 4, 2; %e A285362 15, 12, 3; %e A285362 60, 58, 28, 4; %e A285362 262, 273, 185, 55, 5; %e A285362 1243, 1329, 1094, 495, 96, 6; %e A285362 6358, 6839, 6293, 3757, 1148, 154, 7; %e A285362 34835, 37423, 36619, 26421, 11122, 2380, 232, 8; %e A285362 ... %p A285362 T:= proc(h) option remember; local b; b:= %p A285362 proc(n, m) option remember; `if`(n=0, [1, 0], add((p-> p %p A285362 +[0, (h-n+1)*p[1]*x^j])(b(n-1, max(m, j))), j=1..m+1)) %p A285362 end: (p-> seq(coeff(p, x, i), i=1..n))(b(h, 0)[2]) %p A285362 end: %p A285362 seq(T(n), n=1..12); %t A285362 T[h_] := T[h] = Module[{b}, b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[# + {0, (h - n + 1)*#[[1]]*x^j}&[b[n - 1, Max[m, j]]], {j, 1, m + 1}]]; Table[Coefficient[#, x, i], {i, 1, n}]&[b[h, 0][[2]]]]; %t A285362 Table[T[n], {n, 1, 12}] // Flatten (* _Jean-François Alcover_, Apr 30 2018, after _Alois P. Heinz_ *) %Y A285362 Columns k=1-10 give: A285363, A285364, A285365, A285366, A285367, A285368, A285369, A285370, A285371, A285372. %Y A285362 Row sums give A000110(n) * A000217(n) = A105488(n+3). %Y A285362 Main diagonal and first lower diagonal give: A000027, A006000 (for n>0). %Y A285362 T(2n+1,n+1) gives A285410. %Y A285362 Cf. A270236, A285439, A285595. %K A285362 nonn,tabl %O A285362 1,2 %A A285362 _Alois P. Heinz_, Apr 17 2017