This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285363 #15 May 20 2018 11:36:14 %S A285363 1,4,15,60,262,1243,6358,34835,203307,1257913,8216945,56463487, %T A285363 406868167,3065920770,24099977863,197179545722,1675846476148, %U A285363 14769104672839,134745258569108,1270767279092285,12371426210292311,124173909409948575,1283498833928098171 %N A285363 Sum of the entries in the first blocks of all set partitions of [n]. %H A285363 Alois P. Heinz, <a href="/A285363/b285363.txt">Table of n, a(n) for n = 1..575</a> %H A285363 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %F A285363 a(n) = A285362(n,1). %e A285363 a(3) = 15 because the sum of the entries in the first blocks of all set partitions of [3] (123, 12|3, 13|2, 1|23, 1|2|3) is 6+3+4+1+1 = 15. %p A285363 a:= proc(h) option remember; local b; b:= %p A285363 proc(n, m) option remember; %p A285363 `if`(n=0, [1, 0], add((p-> `if`(j=1, p+ [0, %p A285363 (h-n+1)*p[1]], p))(b(n-1, max(m, j))), j=1..m+1)) %p A285363 end: b(h, 0)[2] %p A285363 end: %p A285363 seq(a(n), n=1..30); %t A285363 a[h_] := a[h] = Module[{b}, b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[If[j == 1, # + {0, (h - n + 1)*#[[1]]}, #]&[b[n - 1, Max[m, j]]], {j, 1, m + 1}]]; b[h, 0][[2]]]; %t A285363 Table[a[n], {n, 1, 30}] (* _Jean-François Alcover_, May 20 2018, translated from Maple *) %Y A285363 Column k=1 of A285362. %Y A285363 Cf. A284816, A285424. %K A285363 nonn %O A285363 1,2 %A A285363 _Alois P. Heinz_, Apr 17 2017