cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285363 Sum of the entries in the first blocks of all set partitions of [n].

This page as a plain text file.
%I A285363 #15 May 20 2018 11:36:14
%S A285363 1,4,15,60,262,1243,6358,34835,203307,1257913,8216945,56463487,
%T A285363 406868167,3065920770,24099977863,197179545722,1675846476148,
%U A285363 14769104672839,134745258569108,1270767279092285,12371426210292311,124173909409948575,1283498833928098171
%N A285363 Sum of the entries in the first blocks of all set partitions of [n].
%H A285363 Alois P. Heinz, <a href="/A285363/b285363.txt">Table of n, a(n) for n = 1..575</a>
%H A285363 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a>
%F A285363 a(n) = A285362(n,1).
%e A285363 a(3) = 15 because the sum of the entries in the first blocks of all set partitions of [3] (123, 12|3, 13|2, 1|23, 1|2|3) is 6+3+4+1+1 = 15.
%p A285363 a:= proc(h) option remember; local b; b:=
%p A285363       proc(n, m) option remember;
%p A285363         `if`(n=0, [1, 0], add((p-> `if`(j=1, p+ [0,
%p A285363         (h-n+1)*p[1]], p))(b(n-1, max(m, j))), j=1..m+1))
%p A285363       end: b(h, 0)[2]
%p A285363     end:
%p A285363 seq(a(n), n=1..30);
%t A285363 a[h_] := a[h] = Module[{b}, b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[If[j == 1, # + {0, (h - n + 1)*#[[1]]}, #]&[b[n - 1, Max[m, j]]], {j, 1, m + 1}]]; b[h, 0][[2]]];
%t A285363 Table[a[n], {n, 1, 30}] (* _Jean-François Alcover_, May 20 2018, translated from Maple *)
%Y A285363 Column k=1 of A285362.
%Y A285363 Cf. A284816, A285424.
%K A285363 nonn
%O A285363 1,2
%A A285363 _Alois P. Heinz_, Apr 17 2017