cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285364 Sum of the entries in the second blocks of all set partitions of [n].

This page as a plain text file.
%I A285364 #10 May 27 2018 11:02:01
%S A285364 2,12,58,273,1329,6839,37423,217606,1340597,8719806,59680387,
%T A285364 428481322,3218109788,25220647760,205790862332,1744755841379,
%U A285364 15342274425585,139692065365753,1314995731359189,12780466391685166,128081591768679823,1322011886920066940
%N A285364 Sum of the entries in the second blocks of all set partitions of [n].
%H A285364 Alois P. Heinz, <a href="/A285364/b285364.txt">Table of n, a(n) for n = 2..575</a>
%H A285364 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a>
%F A285364 a(n) = A285362(n,2).
%e A285364 a(3) = 12 because the sum of the entries in the second blocks of all set partitions of [3] (123, 12|3, 13|2, 1|23, 1|2|3) is 0+3+2+5+2 = 12.
%p A285364 a:= proc(h) option remember; local b; b:=
%p A285364       proc(n, m) option remember;
%p A285364         `if`(n=0, [1, 0], add((p-> `if`(j=2, p+ [0,
%p A285364         (h-n+1)*p[1]], p))(b(n-1, max(m, j))), j=1..m+1))
%p A285364       end: b(h, 0)[2]
%p A285364     end:
%p A285364 seq(a(n), n=2..30);
%t A285364 a[h_] := a[h] = Module[{b}, b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[Function[p, If[j == 2, p + {0, (h - n + 1)*p[[1]]}, p]][b[n - 1, Max[m, j]]], {j, 1, m + 1}]]; b[h, 0][[2]]];
%t A285364 Table[a[n], {n, 2, 30}] (* _Jean-François Alcover_, May 27 2018, from Maple *)
%Y A285364 Column k=2 of A285362.
%K A285364 nonn
%O A285364 2,1
%A A285364 _Alois P. Heinz_, Apr 17 2017