This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285366 #9 May 27 2018 08:10:43 %S A285366 4,55,495,3757,26421,180482,1230737,8520912,60531347,444006008, %T A285366 3374292280,26605751388,217686862402,1847108846441,16237616979723, %U A285366 147709622593855,1388722474550671,13477574785475778,134861358322272607,1389822348657508142,14735739124218384875 %N A285366 Sum of the entries in the fourth blocks of all set partitions of [n]. %H A285366 Alois P. Heinz, <a href="/A285366/b285366.txt">Table of n, a(n) for n = 4..400</a> %H A285366 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %F A285366 a(n) = A285362(n,4). %p A285366 a:= proc(h) option remember; local b; b:= %p A285366 proc(n, m) option remember; %p A285366 `if`(n=0, [1, 0], add((p-> `if`(j=4, p+ [0, %p A285366 (h-n+1)*p[1]], p))(b(n-1, max(m, j))), j=1..m+1)) %p A285366 end: b(h, 0)[2] %p A285366 end: %p A285366 seq(a(n), n=4..30); %t A285366 a[h_] := a[h] = Module[{b}, b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[Function[p, If[j == 4, p + {0, (h - n + 1)*p[[1]]}, p]][b[n - 1, Max[m, j]]], {j, 1, m + 1}]]; b[h, 0][[2]]]; %t A285366 Table[a[n], {n, 4, 30}] (* _Jean-François Alcover_, May 27 2018, from Maple *) %Y A285366 Column k=4 of A285362. %K A285366 nonn %O A285366 4,1 %A A285366 _Alois P. Heinz_, Apr 17 2017