This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285367 #7 May 27 2018 08:27:12 %S A285367 5,96,1148,11122,96454,787959,6250696,49115820,387561065,3100950735, %T A285367 25330467332,212222629466,1828990798243,16241051507536, %U A285367 148696716804278,1403754413149792,13658941220426754,136899626339091133,1412247058871264298,14982353645545370808 %N A285367 Sum of the entries in the fifth blocks of all set partitions of [n]. %H A285367 Alois P. Heinz, <a href="/A285367/b285367.txt">Table of n, a(n) for n = 5..400</a> %H A285367 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %F A285367 a(n) = A285362(n,5). %p A285367 a:= proc(h) option remember; local b; b:= %p A285367 proc(n, m) option remember; %p A285367 `if`(n=0, [1, 0], add((p-> `if`(j=5, p+ [0, %p A285367 (h-n+1)*p[1]], p))(b(n-1, max(m, j))), j=1..m+1)) %p A285367 end: b(h, 0)[2] %p A285367 end: %p A285367 seq(a(n), n=5..30); %t A285367 a[h_] := a[h] = Module[{b}, b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[Function[p, If[j == 5, p + {0, (h - n + 1)*p[[1]]}, p]][b[n - 1, Max[m, j]]], {j, 1, m + 1}]]; b[h, 0][[2]]]; %t A285367 Table[a[n], {n, 5, 30}] (* _Jean-François Alcover_, May 27 2018, from Maple *) %Y A285367 Column k=5 of A285362. %K A285367 nonn %O A285367 5,1 %A A285367 _Alois P. Heinz_, Apr 17 2017