cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285367 Sum of the entries in the fifth blocks of all set partitions of [n].

This page as a plain text file.
%I A285367 #7 May 27 2018 08:27:12
%S A285367 5,96,1148,11122,96454,787959,6250696,49115820,387561065,3100950735,
%T A285367 25330467332,212222629466,1828990798243,16241051507536,
%U A285367 148696716804278,1403754413149792,13658941220426754,136899626339091133,1412247058871264298,14982353645545370808
%N A285367 Sum of the entries in the fifth blocks of all set partitions of [n].
%H A285367 Alois P. Heinz, <a href="/A285367/b285367.txt">Table of n, a(n) for n = 5..400</a>
%H A285367 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a>
%F A285367 a(n) = A285362(n,5).
%p A285367 a:= proc(h) option remember; local b; b:=
%p A285367       proc(n, m) option remember;
%p A285367         `if`(n=0, [1, 0], add((p-> `if`(j=5, p+ [0,
%p A285367         (h-n+1)*p[1]], p))(b(n-1, max(m, j))), j=1..m+1))
%p A285367       end: b(h, 0)[2]
%p A285367     end:
%p A285367 seq(a(n), n=5..30);
%t A285367 a[h_] := a[h] = Module[{b}, b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[Function[p, If[j == 5, p + {0, (h - n + 1)*p[[1]]}, p]][b[n - 1, Max[m, j]]], {j, 1, m + 1}]]; b[h, 0][[2]]];
%t A285367 Table[a[n], {n, 5, 30}] (* _Jean-François Alcover_, May 27 2018, from Maple *)
%Y A285367 Column k=5 of A285362.
%K A285367 nonn
%O A285367 5,1
%A A285367 _Alois P. Heinz_, Apr 17 2017