This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285368 #8 May 27 2018 08:27:29 %S A285368 6,154,2380,28975,308127,3018824,28133574,254715640,2274064881, %T A285368 20242054046,181155397430,1640541610028,15107388580258, %U A285368 141982420633882,1365335004650614,13456694682282849,136069364339492065,1412201447170038064,15044059353340996950 %N A285368 Sum of the entries in the sixth blocks of all set partitions of [n]. %H A285368 Alois P. Heinz, <a href="/A285368/b285368.txt">Table of n, a(n) for n = 6..400</a> %H A285368 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %F A285368 a(n) = A285362(n,6). %p A285368 a:= proc(h) option remember; local b; b:= %p A285368 proc(n, m) option remember; %p A285368 `if`(n=0, [1, 0], add((p-> `if`(j=6, p+ [0, %p A285368 (h-n+1)*p[1]], p))(b(n-1, max(m, j))), j=1..m+1)) %p A285368 end: b(h, 0)[2] %p A285368 end: %p A285368 seq(a(n), n=6..30); %t A285368 a[h_] := a[h] = Module[{b}, b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[Function[p, If[j == 6, p + {0, (h - n + 1)*p[[1]]}, p]][b[n - 1, Max[m, j]]], {j, 1, m + 1}]]; b[h, 0][[2]]]; %t A285368 Table[a[n], {n, 6, 30}] (* _Jean-François Alcover_, May 27 2018, from Maple *) %Y A285368 Column k=6 of A285362. %K A285368 nonn %O A285368 6,1 %A A285368 _Alois P. Heinz_, Apr 17 2017