This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285369 #12 May 27 2018 10:31:48 %S A285369 7,232,4518,67898,875365,10228471,111964040,1173487986,11959590504, %T A285369 119889568676,1192711559418,11859084564254,118526150123309, %U A285369 1196311505171568,12239696866561282,127315711586330538,1349476206629576995,14599608027440148129,161399084259928978190 %N A285369 Sum of the entries in the seventh blocks of all set partitions of [n]. %H A285369 Alois P. Heinz, <a href="/A285369/b285369.txt">Table of n, a(n) for n = 7..400</a> %H A285369 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %F A285369 a(n) = A285362(n,7). %p A285369 a:= proc(h) option remember; local b; b:= %p A285369 proc(n, m) option remember; %p A285369 `if`(n=0, [1, 0], add((p-> `if`(j=7, p+ [0, %p A285369 (h-n+1)*p[1]], p))(b(n-1, max(m, j))), j=1..m+1)) %p A285369 end: b(h, 0)[2] %p A285369 end: %p A285369 seq(a(n), n=7..30); %t A285369 a[h_] := a[h] = Module[{b}, b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[Function[p, If[j == 7, p + {0, (h - n + 1)*p[[1]]}, p]][b[n - 1, Max[m, j]]], {j, 1, m + 1}]]; b[h, 0][[2]]]; %t A285369 Table[a[n], {n, 7, 30}] (* _Jean-François Alcover_, May 27 2018, from Maple *) %Y A285369 Column k=7 of A285362. %K A285369 nonn %O A285369 7,1 %A A285369 _Alois P. Heinz_, Apr 17 2017