This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285370 #10 Nov 22 2024 06:18:34 %S A285370 8,333,7995,145814,2250020,31075944,397434249,4813480830,56089581910, %T A285370 636257739216,7090058863984,78176548855068,858005254659222, %U A285370 9419825826737075,103885234357070729,1154951013922367450,12982852258320087936,147928345019800310188 %N A285370 Sum of the entries in the eighth blocks of all set partitions of [n]. %H A285370 Alois P. Heinz, <a href="/A285370/b285370.txt">Table of n, a(n) for n = 8..400</a> %H A285370 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %F A285370 a(n) = A285362(n,8). %p A285370 a:= proc(h) option remember; local b; b:= %p A285370 proc(n, m) option remember; %p A285370 `if`(n=0, [1, 0], add((p-> `if`(j=8, p+ [0, %p A285370 (h-n+1)*p[1]], p))(b(n-1, max(m, j))), j=1..m+1)) %p A285370 end: b(h, 0)[2] %p A285370 end: %p A285370 seq(a(n), n=8..30); %t A285370 a[h_] := a[h] = Module[{b}, b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[Function[p, If[j == 8, p + {0, (h - n + 1)*p[[1]]}, p]][b[n - 1, Max[m, j]]], {j, 1, m + 1}]]; b[h, 0][[2]]]; %t A285370 Table[a[n], {n, 8, 30}] (* _Jean-François Alcover_, May 27 2018, from Maple *) %Y A285370 Column k=8 of A285362. %K A285370 nonn %O A285370 8,1 %A A285370 _Alois P. Heinz_, Apr 17 2017