This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285371 #7 May 27 2018 08:08:59 %S A285371 9,460,13365,291312,5313419,85887795,1273861815,17739276489, %T A285371 235727269842,3025136223480,37838768653358,464684701656546, %U A285371 5636371498958757,67862072916294706,814494099000392487,9780912755503955712,117894823818639390505,1430383074839724093993 %N A285371 Sum of the entries in the ninth blocks of all set partitions of [n]. %H A285371 Alois P. Heinz, <a href="/A285371/b285371.txt">Table of n, a(n) for n = 9..400</a> %H A285371 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %F A285371 a(n) = A285362(n,9). %p A285371 a:= proc(h) option remember; local b; b:= %p A285371 proc(n, m) option remember; %p A285371 `if`(n=0, [1, 0], add((p-> `if`(j=9, p+ [0, %p A285371 (h-n+1)*p[1]], p))(b(n-1, max(m, j))), j=1..m+1)) %p A285371 end: b(h, 0)[2] %p A285371 end: %p A285371 seq(a(n), n=9..30); %t A285371 a[h_] := a[h] = Module[{b}, b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[Function[p, If[j == 9, p + {0, (h - n + 1)*p[[1]]}, p]][b[n - 1, Max[m, j]]], {j, 1, m + 1}]]; b[h, 0][[2]]]; %t A285371 Table[a[n], {n, 9, 30}] (* _Jean-François Alcover_, May 27 2018, from Maple *) %Y A285371 Column k=9 of A285362. %K A285371 nonn %O A285371 9,1 %A A285371 _Alois P. Heinz_, Apr 17 2017