cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285380 G.f.: 1/(1 - 1!*x/(1 - 2!*x/(1 - 3!*x/(1 - 4!*x/(1 - 5!*x/(1 - 6!*x/(1 - ...))))))), a continued fraction.

This page as a plain text file.
%I A285380 #17 Apr 15 2021 20:24:42
%S A285380 1,1,3,21,459,48069,31721355,151932395493,5929991210130219,
%T A285380 2103657835595933507013,7506346835525189003011779147,
%U A285380 295743497615320848280307669164734117,140189609286888251994538844205855399795958635
%N A285380 G.f.: 1/(1 - 1!*x/(1 - 2!*x/(1 - 3!*x/(1 - 4!*x/(1 - 5!*x/(1 - 6!*x/(1 - ...))))))), a continued fraction.
%H A285380 Seiichi Manyama, <a href="/A285380/b285380.txt">Table of n, a(n) for n = 0..43</a>
%F A285380 a(n) ~ A000178(n) ~ BarnesG(n+2) ~ exp(1/12 - n - 3*n^2/4) * n^(5/12 + n + n^2/2) * (2*Pi)^((n+1)/2) / A, where A is the Glaisher-Kinkelin constant A074962. - _Vaclav Kotesovec_, Aug 26 2017
%e A285380 G.f.: A(x) = 1 + x + 3*x^2 + 21*x^3 + 459*x^4 + 48069*x^5 + 31721355*x^6 + 151932395493*x^7 + ...
%t A285380 nmax = 12; CoefficientList[Series[1/(1 + ContinuedFractionK[-k! x, 1, {k, 1, nmax}]), {x, 0, nmax}], x]
%o A285380 (PARI) a(n) = my(A=1+O(x)); for(i=1, n, A=1-(n-i+1)!*x/A); polcoef(1/A, n); \\ _Seiichi Manyama_, Apr 15 2021
%Y A285380 Cf. A000142, A001147, A268646, A269353.
%K A285380 nonn
%O A285380 0,3
%A A285380 _Ilya Gutkovskiy_, Apr 17 2017