cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285386 Lexicographically earliest sequence of distinct positive terms such that the product of two consecutive terms is divisible by p^4 for some prime p.

This page as a plain text file.
%I A285386 #11 Apr 20 2017 12:34:06
%S A285386 1,16,2,8,4,12,20,24,6,27,3,32,5,48,7,64,9,18,36,28,40,10,56,14,72,22,
%T A285386 80,11,81,13,96,15,54,21,108,30,88,26,104,34,112,17,128,19,144,23,160,
%U A285386 25,50,75,100,44,52,60,68,76,84,92,116,120,38,136,42,135,33
%N A285386 Lexicographically earliest sequence of distinct positive terms such that the product of two consecutive terms is divisible by p^4 for some prime p.
%C A285386 This sequence is a permutation of the natural numbers.
%H A285386 Rémy Sigrist, <a href="/A285386/b285386.txt">Table of n, a(n) for n = 1..10000</a>
%H A285386 Rémy Sigrist, <a href="/A285386/a285386.txt">C++ program for A285386</a>
%H A285386 Rémy Sigrist, <a href="/A285386/a285386.png">Scatterplot of the first 100000 terms</a>
%H A285386 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%e A285386 The first terms, alongside the primes p such that p^4 divides a(n)*a(n+1), are:
%e A285386 n       a(n)    p
%e A285386 --      ----    -
%e A285386 1       1       2
%e A285386 2       16      2
%e A285386 3       2       2
%e A285386 4       8       2
%e A285386 5       4       2
%e A285386 6       12      2
%e A285386 7       20      2
%e A285386 8       24      2
%e A285386 9       6       3
%e A285386 10      27      3
%e A285386 11      3       2
%e A285386 12      32      2
%e A285386 13      5       2
%e A285386 14      48      2
%e A285386 15      7       2
%e A285386 16      64      2
%e A285386 17      9       3
%e A285386 18      18      3
%e A285386 19      36      2
%e A285386 20      28      2
%e A285386 ...
%e A285386 165     95      2
%e A285386 166     432     2, 3
%e A285386 167     87      3
%e A285386 ...
%Y A285386 Cf. A285296.
%K A285386 nonn
%O A285386 1,2
%A A285386 _Rémy Sigrist_, Apr 18 2017