This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285407 #13 Aug 25 2017 03:25:51 %S A285407 1,0,1,0,1,1,1,2,2,3,5,5,9,11,15,23,28,43,57,78,113,149,214,293,403, %T A285407 569,774,1086,1502,2072,2896,3986,5548,7691,10636,14797,20459,28400, %U A285407 39386,54542,75724,104886,145468,201733,279545,387786,537472,745233,1033383,1432415,1986394 %N A285407 G.f.: 1/(1 - x^2/(1 - x^3/(1 - x^5/(1 - x^7/(1 - x^11/(1 - ... - x^prime(k)/(1 - ... ))))))), a continued fraction. %H A285407 Robert Israel, <a href="/A285407/b285407.txt">Table of n, a(n) for n = 0..5000</a> %F A285407 a(n) ~ c * d^n, where d = 1.3864622092472465020397266918102624708859968795203700659786636158522760956... and c = 0.15945087310540003725148530084775272562567007586487061850065597143186... - _Vaclav Kotesovec_, Aug 25 2017 %e A285407 G.f.: A(x) = 1 + x^2 + x^4 + x^5 + x^6 + 2*x^7 + 2*x^8 + 3*x^9 + 5*x^10 + ... %p A285407 R:= 1: %p A285407 for i from numtheory:-pi(50) to 1 by -1 do %p A285407 R:= series(1-x^ithprime(i)/R, x, 51); %p A285407 od: %p A285407 R:= series(1/R, x, 51): %p A285407 seq(coeff(R,x,j),j=0..50); # _Robert Israel_, Apr 20 2017 %t A285407 nmax = 50; CoefficientList[Series[1/(1 + ContinuedFractionK[-x^Prime[k], 1, {k, 1, nmax}]), {x, 0, nmax}], x] %Y A285407 Cf. A000040, A206739, A206741, A206742, A206743, A227310, A269353. %K A285407 nonn %O A285407 0,8 %A A285407 _Ilya Gutkovskiy_, Apr 18 2017