cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285417 Lexicographically earliest sequence of distinct positive terms such that the product of two consecutive terms is divisible by p^5 for some prime p.

This page as a plain text file.
%I A285417 #8 Apr 20 2017 12:34:35
%S A285417 1,32,2,16,4,8,12,24,20,40,28,48,6,64,3,81,9,27,18,54,36,56,44,72,52,
%T A285417 80,10,96,5,128,7,160,11,192,13,224,14,112,22,144,26,176,30,162,15,
%U A285417 243,17,256,19,288,21,320,23,352,25,125,50,208,34,240,38,272,42
%N A285417 Lexicographically earliest sequence of distinct positive terms such that the product of two consecutive terms is divisible by p^5 for some prime p.
%C A285417 This sequence is a permutation of the natural numbers.
%H A285417 Rémy Sigrist, <a href="/A285417/b285417.txt">Table of n, a(n) for n = 1..10000</a>
%H A285417 Rémy Sigrist, <a href="/A285417/a285417.txt">C++ program for A285417</a>
%H A285417 Rémy Sigrist, <a href="/A285417/a285417.png">Scatterplot of the first 150000 terms</a>
%H A285417 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%e A285417 The first terms, alongside the primes p such that p^5 divides a(n)*a(n+1), are:
%e A285417 n       a(n)    p
%e A285417 --      ----    -
%e A285417 1       1       2
%e A285417 2       32      2
%e A285417 3       2       2
%e A285417 4       16      2
%e A285417 5       4       2
%e A285417 6       8       2
%e A285417 7       12      2
%e A285417 8       24      2
%e A285417 9       20      2
%e A285417 10      40      2
%e A285417 11      28      2
%e A285417 12      48      2
%e A285417 13      6       2
%e A285417 14      64      2
%e A285417 15      3       3
%e A285417 16      81      3
%e A285417 17      9       3
%e A285417 18      27      3
%e A285417 19      18      3
%e A285417 20      54      3
%e A285417 ...
%e A285417 1476    7744    2
%e A285417 1477    811     2, 3
%e A285417 1478    7776    2, 3
%e A285417 1479    813     3
%e A285417 ...
%Y A285417 Cf. A285296.
%K A285417 nonn
%O A285417 1,2
%A A285417 _Rémy Sigrist_, Apr 18 2017