This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285439 #35 Jan 30 2024 21:22:38 %S A285439 1,4,2,21,12,3,132,76,28,4,960,545,235,55,5,7920,4422,2064,612,96,6, %T A285439 73080,40194,19607,6692,1386,154,7,745920,405072,202792,75944,18736, %U A285439 2816,232,8,8346240,4484808,2280834,911637,254061,46422,5256,333,9 %N A285439 Sum T(n,k) of the entries in the k-th cycles of all permutations of [n]; triangle T(n,k), n>=1, 1<=k<=n, read by rows. %C A285439 Each cycle is written with the smallest element first and cycles are arranged in increasing order of their first elements. %H A285439 Alois P. Heinz, <a href="/A285439/b285439.txt">Rows n = 1..23, flattened</a> %H A285439 Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation">Permutation</a> %F A285439 Sum_{k=1..n} k * T(n,k) = n^2 * n! = A002775(n). %e A285439 T(3,1) = 21 because the sum of the entries in the first cycles of all permutations of [3] ((123), (132), (12)(3), (13)(2), (1)(23), (1)(2)(3)) is 6+6+3+4+1+1 = 21. %e A285439 Triangle T(n,k) begins: %e A285439 1; %e A285439 4, 2; %e A285439 21, 12, 3; %e A285439 132, 76, 28, 4; %e A285439 960, 545, 235, 55, 5; %e A285439 7920, 4422, 2064, 612, 96, 6; %e A285439 73080, 40194, 19607, 6692, 1386, 154, 7; %e A285439 745920, 405072, 202792, 75944, 18736, 2816, 232, 8; %e A285439 ... %p A285439 T:= proc(h) option remember; local b; b:= %p A285439 proc(n, l) option remember; `if`(n=0, [mul((i-1)!, i=l), 0], %p A285439 (p-> p+[0, (h-n+1)*p[1]*x^(nops(l)+1)])(b(n-1, [l[], 1]))+ %p A285439 add((p-> p+[0, (h-n+1)*p[1]*x^j])( %p A285439 b(n-1, subsop(j=l[j]+1, l))), j=1..nops(l))) %p A285439 end: (p-> seq(coeff(p, x, i), i=1..n))(b(h, [])[2]) %p A285439 end: %p A285439 seq(T(n), n=1..10); %t A285439 T[h_] := T[h] = Module[{b}, b[n_, l_] := b[n, l] = If[n == 0, {Product[(i - 1)!, {i, l}], 0}, # + {0, (h - n + 1)*#[[1]]*x^(Length[l] + 1)}&[b[n - 1, Append[l, 1]]] + Sum[# + {0, (h-n+1)*#[[1]]*x^j}&[b[n - 1, ReplacePart[ l, j -> l[[j]] + 1]]], {j, 1, Length[l]}]]; Table[Coefficient[#, x, i], {i, 1, n}]&[b[h, {}][[2]]]]; %t A285439 Table[T[n], {n, 1, 10}] // Flatten (* _Jean-François Alcover_, May 25 2018, translated from Maple *) %Y A285439 Columns k=1-2 give: A284816, A285489. %Y A285439 Row sums give A000142 * A000217 = A180119. %Y A285439 Main diagonal and first lower diagonal give: A000027, A006000 (for n>0). %Y A285439 Cf. A000290, A002775, A185105, A285362, A285382, A285793. %K A285439 nonn,tabl %O A285439 1,2 %A A285439 _Alois P. Heinz_, Apr 19 2017