cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285443 Expansion of Product_{k>0} ((1-x^{5k-2}) * (1-x^{5k-3})/((1-x^{5k-1}) * (1-x^{5k-4})))^3 in powers of x.

This page as a plain text file.
%I A285443 #21 Jul 29 2024 06:16:26
%S A285443 1,3,3,-2,-6,0,12,9,-15,-28,3,48,33,-48,-87,7,135,90,-134,-234,21,356,
%T A285443 237,-330,-575,42,831,540,-762,-1296,107,1848,1191,-1633,-2769,210,
%U A285443 3842,2448,-3366,-5634,444,7722,4889,-6624,-11028,840,14871,9342,-12636,-20877
%N A285443 Expansion of Product_{k>0} ((1-x^{5k-2}) * (1-x^{5k-3})/((1-x^{5k-1}) * (1-x^{5k-4})))^3 in powers of x.
%H A285443 Seiichi Manyama, <a href="/A285443/b285443.txt">Table of n, a(n) for n = 0..10000</a>
%F A285443 a(0) = 1, a(n) = (3/n)*Sum_{k=1..n} A109091(k)*a(n-k) for n > 0.
%F A285443 Expansion of cube of continued fraction 1 + x/(1 + x^2/(1 + x^3/(1 + x^4/(1 + ...)))). - _Ilya Gutkovskiy_, Apr 19 2017
%F A285443 G.f.: ( Sum_{k in Z} x^k / (1 - x^(5*k+1)) ) / ( Sum_{k in Z} x^(2*k) / (1 - x^(5*k+2)) ). - _Seiichi Manyama_, Jul 29 2024
%Y A285443 Prod_{k>0} ((1-x^{5k-1}) * (1-x^{5k-4})/((1-x^{5k-2}) * (1-x^{5k-3})))^m: A285444 (m=-4), this sequence (m=-3), A285442 (m=-2), A003823 (m=-1), A007325 (m=1), A055101 (m=2), A055102 (m=3), A055103 (m=4).
%Y A285443 Cf. A109091, A340455, A340456.
%K A285443 sign
%O A285443 0,2
%A A285443 _Seiichi Manyama_, Apr 19 2017