cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285447 Expansion of Product_{k>=1} ((1 + x^(3*k)) / (1 - x^k))^k.

This page as a plain text file.
%I A285447 #7 Apr 19 2017 09:42:06
%S A285447 1,1,3,7,14,27,56,101,190,347,617,1082,1895,3230,5490,9226,15332,
%T A285447 25259,41356,67021,107989,172789,274613,433815,681650,1064661,1654739,
%U A285447 2559029,3938438,6033967,9205152,13982675,21156174,31886290,47879210,71636483,106814323
%N A285447 Expansion of Product_{k>=1} ((1 + x^(3*k)) / (1 - x^k))^k.
%H A285447 Vaclav Kotesovec, <a href="/A285447/b285447.txt">Table of n, a(n) for n = 0..1000</a>
%F A285447 a(n) ~ exp(1/12 + 2^(-4/3) * 3^(2/3) * (13*Zeta(3))^(1/3) * n^(2/3)) * (13*Zeta(3))^(7/36) / (A * 2^(7/9) * 3^(25/36) * sqrt(Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962.
%t A285447 nmax = 40; CoefficientList[Series[Product[((1+x^(3*k))/(1-x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x]
%Y A285447 Cf. A266648, A285446.
%Y A285447 Cf. A156616, A285462, A285460, A285461.
%K A285447 nonn
%O A285447 0,3
%A A285447 _Vaclav Kotesovec_, Apr 19 2017