This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285461 #9 Apr 19 2017 10:33:22 %S A285461 1,1,3,6,13,25,49,89,166,295,526,909,1571,2657,4475,7432,12257,20000, %T A285461 32436,52126,83285,132057,208221,326202,508372,787777,1214828,1863932, %U A285461 2847020,4328765,6554359,9882795,14843999,22210386,33112817,49192218,72834243 %N A285461 Expansion of Product_{k>=1} ((1 + x^(5*k)) / (1 - x^k))^k. %C A285461 In general, if m >= 1 and g.f. = Product_{k>=1} ((1 + x^(m*k)) / (1 - x^k))^k, then a(n, m) ~ exp(1/12 + 3 * 2^(-4/3) * (4 + 3/m^2)^(1/3) * Zeta(3)^(1/3) * n^(2/3)) * (4 + 3/m^2)^(7/36) * Zeta(3)^(7/36) / (A * 2^(7/9) * sqrt(3*Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962. %H A285461 Vaclav Kotesovec, <a href="/A285461/b285461.txt">Table of n, a(n) for n = 0..1000</a> %F A285461 a(n) ~ exp(1/12 + 3 * 2^(-4/3) * 5^(-2/3) * (103*Zeta(3))^(1/3) * n^(2/3)) * (103*Zeta(3))^(7/36) / (A * 2^(7/9) * 5^(7/18) * sqrt(3*Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962. %t A285461 nmax = 40; CoefficientList[Series[Product[((1+x^(5*k))/(1-x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x] %Y A285461 Cf. A156616 (m=1), A285462 (m=2), A285447 (m=3), A285460 (m=4). %Y A285461 Cf. A024789. %K A285461 nonn %O A285461 0,3 %A A285461 _Vaclav Kotesovec_, Apr 19 2017