cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285473 Binary representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 3", based on the 5-celled von Neumann neighborhood.

This page as a plain text file.
%I A285473 #10 Feb 16 2025 08:33:44
%S A285473 1,11,1,1111,1,111111,1,11111111,1,1111111111,1,111111111111,1,
%T A285473 11111111111111,1,1111111111111111,1,111111111111111111,1,
%U A285473 11111111111111111111,1,1111111111111111111111,1,111111111111111111111111,1,11111111111111111111111111,1
%N A285473 Binary representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 3", based on the 5-celled von Neumann neighborhood.
%C A285473 Initialized with a single black (ON) cell at stage zero.
%D A285473 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
%H A285473 Robert Price, <a href="/A285473/b285473.txt">Table of n, a(n) for n = 0..126</a>
%H A285473 Robert Price, <a href="/A285473/a285473.tmp.txt">Diagrams of first 20 stages</a>
%H A285473 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015
%H A285473 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H A285473 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H A285473 Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>
%H A285473 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H A285473 <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
%H A285473 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%H A285473 Robert Price, <a href="/A285473/a285473.tmp.txt">Diagrams of first 20 stages</a>
%F A285473 Conjectures from _Colin Barker_, Apr 19 2017: (Start)
%F A285473 G.f.: (1 + 11*x - 100*x^2) / ((1 - x)*(1 + x)*(1 - 10*x)*(1 + 10*x)).
%F A285473 a(n) = (4 + 5*(-1)^n - (-2)^n*5^(1+n) + 2^n*5^(1+n))/9.
%F A285473 a(n) = 101*a(n-2) - 100*a(n-4) for n>3.
%F A285473 (End)
%t A285473 CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
%t A285473 code = 3; stages = 128;
%t A285473 rule = IntegerDigits[code, 2, 10];
%t A285473 g = 2 * stages + 1; (* Maximum size of grid *)
%t A285473 a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
%t A285473 ca = a;
%t A285473 ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
%t A285473 PrependTo[ca, a];
%t A285473 (* Trim full grid to reflect growth by one cell at each stage *)
%t A285473 k = (Length[ca[[1]]] + 1)/2;
%t A285473 ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
%t A285473 Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
%Y A285473 Cf. A285474, A080924, A285475.
%K A285473 nonn,easy
%O A285473 0,2
%A A285473 _Robert Price_, Apr 19 2017