cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285474 Binary representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 3", based on the 5-celled von Neumann neighborhood.

This page as a plain text file.
%I A285474 #10 Feb 16 2025 08:33:44
%S A285474 1,11,100,1111,10000,111111,1000000,11111111,100000000,1111111111,
%T A285474 10000000000,111111111111,1000000000000,11111111111111,
%U A285474 100000000000000,1111111111111111,10000000000000000,111111111111111111,1000000000000000000,11111111111111111111
%N A285474 Binary representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 3", based on the 5-celled von Neumann neighborhood.
%C A285474 Initialized with a single black (ON) cell at stage zero.
%D A285474 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
%H A285474 Robert Price, <a href="/A285474/b285474.txt">Table of n, a(n) for n = 0..126</a>
%H A285474 Robert Price, <a href="/A285474/a285474.tmp.txt">Diagrams of first 20 stages</a>
%H A285474 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015
%H A285474 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H A285474 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H A285474 Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>
%H A285474 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H A285474 <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
%H A285474 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F A285474 Conjectures from _Colin Barker_, Apr 19 2017: (Start)
%F A285474 G.f.: (1 + 11*x - x^2) / ((1 - x)*(1 + x)*(1 - 10*x)*(1 + 10*x)).
%F A285474 a(n) = (-1 - (-10)^n + (-1)^n + 19*10^n)/18.
%F A285474 a(n) = 101*a(n-2) - 100*a(n-4) for n>3.
%F A285474 (End)
%t A285474 CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
%t A285474 code = 3; stages = 128;
%t A285474 rule = IntegerDigits[code, 2, 10];
%t A285474 g = 2 * stages + 1; (* Maximum size of grid *)
%t A285474 a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
%t A285474 ca = a;
%t A285474 ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
%t A285474 PrependTo[ca, a];
%t A285474 (* Trim full grid to reflect growth by one cell at each stage *)
%t A285474 k = (Length[ca[[1]]] + 1)/2;
%t A285474 ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
%t A285474 Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
%Y A285474 Cf. A285473, A080924, A285475.
%K A285474 nonn,easy
%O A285474 0,2
%A A285474 _Robert Price_, Apr 19 2017