cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A285475 Decimal representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 3", based on the 5-celled von Neumann neighborhood.

This page as a plain text file.
%I A285475 #22 Feb 16 2025 08:33:44
%S A285475 1,3,4,15,16,63,64,255,256,1023,1024,4095,4096,16383,16384,65535,
%T A285475 65536,262143,262144,1048575,1048576,4194303,4194304,16777215,
%U A285475 16777216,67108863,67108864,268435455,268435456,1073741823,1073741824,4294967295,4294967296
%N A285475 Decimal representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 3", based on the 5-celled von Neumann neighborhood.
%C A285475 Initialized with a single black (ON) cell at stage zero.
%D A285475 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
%H A285475 Robert Price, <a href="/A285475/b285475.txt">Table of n, a(n) for n = 0..126</a>
%H A285475 Robert Price, <a href="/A285475/a285475.tmp.txt">Diagrams of first 20 stages</a>
%H A285475 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015.
%H A285475 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H A285475 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H A285475 Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>
%H A285475 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H A285475 <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
%H A285475 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%H A285475 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,5,0,-4).
%F A285475 From _Colin Barker_, Apr 19 2017: (Start)
%F A285475 G.f.: (1 + 3*x - x^2) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 + 2*x)).
%F A285475 a(n) = (-1 - (-2)^n + (-1)^n + 3*2^n)/2.
%F A285475 a(n) = 5*a(n-2) - 4*a(n-4) for n>3. (End)
%F A285475 a(2*n-1) + a(2*n) = A083420(n). - _Paul Curtz_, Dec 16 2024
%t A285475 CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
%t A285475 code = 3; stages = 128;
%t A285475 rule = IntegerDigits[code, 2, 10];
%t A285475 g = 2 * stages + 1; (* Maximum size of grid *)
%t A285475 a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
%t A285475 ca = a;
%t A285475 ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
%t A285475 PrependTo[ca, a];
%t A285475 (* Trim full grid to reflect growth by one cell at each stage *)
%t A285475 k = (Length[ca[[1]]] + 1)/2;
%t A285475 ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
%t A285475 Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
%Y A285475 Cf. A285473, A285474, A080924.
%Y A285475 Cf. A083420.
%Y A285475 Cf. A000302 (even bisection), A024036 (odd bisection).
%K A285475 nonn,easy
%O A285475 0,2
%A A285475 _Robert Price_, Apr 19 2017