This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285481 #18 Nov 29 2019 22:47:18 %S A285481 1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, %T A285481 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3, %U A285481 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 %N A285481 Smallest integer radius needed such that an n-dimensional ball has a volume greater than or equal to 1. %H A285481 Vincenzo Librandi, <a href="/A285481/b285481.txt">Table of n, a(n) for n = 1..1000</a> %F A285481 a(n) = ceiling((1/(((Pi^(n/2))/(gamma(1+n/2)))))^(1/n)). %e A285481 a(12) = 1 because a 12-ball of radius 1 has a volume of Pi^6/720 = 1.33526..., which is greater than 1. %e A285481 a(13) = 2. A 13-ball of radius 1 has a volume of just 0.91..., while a 13-ball of radius 2 has a volume of 7459.87... %t A285481 Table[Ceiling[(1/(((Pi^(n/2))/(Gamma[1 + n/2]))))^(1/n)], {n, 10^2}] (* _Michael De Vlieger_, Apr 24 2017 *) %o A285481 (PARI) volume(n, r) = ((Pi^(n/2))/(gamma(1+n/2)))*r^n %o A285481 a(n) = my(k=1); while(1, if(volume(n, k) >= 1, return(k)); k++) %Y A285481 Cf. A273264, A285482. %K A285481 nonn %O A285481 1,13 %A A285481 _Felix Fröhlich_, Apr 19 2017